网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
TC18钛合金相变点区域动态再结晶模型的建立
英文标题:Establishment of dynamic recrystallization model for TC18 titanium alloy near phase transition point
作者:门正兴 屈仁春 周杰  马亚鑫 苏艳红 
单位:成都航空职业技术学院 重庆大学 
关键词:TC18钛合金 动态再结晶 ZenerHollomon参数 稳态应变 相变 
分类号:TG316
出版年,卷(期):页码:2018,43(10):162-166
摘要:

为了研究TC18钛合金在β转变点附近区域热变形过程中的动态再结晶行为以及微观组织变化规律,利用热模拟设备Gleeble 1500对TC18钛合金β转变点附近的应力-应变曲线进行了测定,并采用金相显微镜对TC18钛合金高温压缩变形后的显微组织进行观察。采用六次多项式拟合方式对TC18钛合金应力-应变曲线进行光顺,然后结合加工硬化率曲线与材料应力-应变曲线确定材料不同情况下的临界应变εc、峰值应变εp以及稳态应变εs,并建立基于ZenerHollomon参数的数学模型。应用Kopp模型建立TC18钛合金在β转变点附近区域的动态再结晶体积分数模型,并根据金相分析结果建立TC18钛合金的动态再结晶晶粒尺寸模型。

 In order to study the dynamic recrystallization behavior and microstructure change law of TC18 titanium alloy during the thermal deformation process near the β transition point, the true stress-strain curve near the β transition point of TC18 titanium alloy was measured by the thermal simulation equipment Gleeble 1500, and the microstructure of TC18 titanium alloy after high temperature compression deformation was observed by metallographic microscope. Then, the stress-strain curve of TC18 titanium alloy was smoothed by the sixth-order polynomial fitting, the critical strain εc, peak strain εp and steady-state strain εs under different conditions of material were determined by combining the work hardening rate curve and the material stress-strain curve, and the mathematical model based on Zener-Hollomon parameters was established. Furthermore, the dynamic recrystallization volume fraction model of TC18 titanium alloy near the β transition point was established by Kopp model, and the dynamic recrystallization grain size model of TC18 titanium alloy was established according to the results of metallographic examination.

基金项目:
国家自然科学基金面上项目(51275543);四川省教育厅资助项目(17ZB0035,18ZA0032)
作者简介:
门正兴(1980-),男,博士,高级工程师,副教授,E-mail:amen1980@163.com
参考文献:

[1]李峰. TC18钛合金锻件生产工艺研究[D]. 哈尔滨:哈尔滨工业大学,2016.


Li F. TC18 Titanium Alloy Forgings Production Technology Research[D]. Harbin: Harbin Institute of Technology, 2016.


[2]贾宝华,刘思勇,李革. 国内TC18钛合金本构关系研究进展[J]. 钛工业进展,2017,34(4):9-12.


Jia B HLiu S YLi G. Research progress on constitutive relation of TC18 titanium alloy in China[J]. Titanium Industry Process, 2017, 34(4):9-12.


[3]徐杰,肖铁忠,黄娟. TC18钛合金等高温压缩过程的组织性能[J].锻压技术,2017421):111-115.


Xu JXiao T ZHuang J. Microstructure and properties of isothermal hightemperature compression process for titanium alloy TC18 [J].Forging & Stamping Technology2017421):111-115.


[4]毛萍莉,孙庆海,刘正,.微观组织状态对Ti6Al4V合金动态力学性能和绝热剪切敏感性的影响[J].稀有金属,2016,40(12):1207-1213.


Mao P LSun Q HLiu Z, et al. Mechanical properties and adiabatic shear sensitivity of Ti6Al4V alloy with different microstructures [J]. Chinese Journal of Rare Metals,2016,40(12):1207-1213.


[5]孙宇,周琛,万志鹏,.金属材料动态再结晶模型研究现状[J].材料导报,2017,31(13):12-16.


Sun Y, Zhou C, Wan Z P, et al. Current research status of dynamic rectystalization model of metallic materials[J]. Materials Review, 2017, 31(13):12-16.


[6]张宏建,温卫东,崔海涛,.IC10合金的动态回复/再结晶本构行为研究[J].中国机械工程,2017,28(18):2256-2261.


Zhang H J, Wen W D, Cui H T, et al. Study on dynamic recovery/ recrystallization constitutive behaviors of alloy IC10[J]. China Mechanical Engineering, 2017, 28(18):2256-2261.


[7]Chen XHuang YHot deformation behavior of HSLA steel Q690 and phase transformation during compression [J]Journal of Alloys and Compounds2015619564-571


[8]权国政,石彧,赵磊,.42CrMo钢热塑性变形诱导动态再结晶行为的动力学描述[J].材料热处报, 2012,33(10):155-162.


Quan G Z, Shi Y, Zhao L, et al. Dynamic recrystallization behavior of 42CrMo steel induced by thermal deformation[J].Transactions of Materials and Heat Treatment, 2012,33(10):155-162.


[9]梁后权,郭鸿镇,宁永权,.基于软化机制的TC18钛合金本构关系研究[J].金属学报,2014,50(7):871-878.


Liang H Q, Guo H Z, Ning Y Q, et al. Analysis on the constitutive relationship of TC18 titanium alloy based on the softening mechanism[J]. Acta Metallurgica Sinica, 2014, 50(7):871-878.


[10]蔡贇,孙朝阳,万李,.AZ80镁合金动态再结晶软化行为研究[J].金属学报,2016,52(9):1123-1132.


Cai Y, Sun C Y, Wan L, et al. Study on the dynamic recrystallization softening behacior of AZ80 magnesium alloy[J]. Acta Metallurgica Sinica, 2016, 52(9):1123-1132.


[11]Liu Y GLi M QLuo J The modelling of dynamic recrystallization in the isothermal compression of 300M steel [J]. Materials Science and Engineering A2013574(6):1-8


[12]王胜龙. AP1000主管道整体锻造成形及晶粒度控制研究[D]. 北京:北京科技大学,2017.


Wang S L. Research on Integral Forging and Grain Size Control of AP1000 Primary Coolant Pipes[D]. Beijing: University of Science and Technology Beijing, 2017.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9