网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
条带上圆形件的优化排样
英文标题:Optimized layout of circular pieces on strip
作者:张立  陈燕  陈秋莲  龚俊舟 
单位:广西大学 华南理工大学 
关键词:圆形件排样 并排 品排 斜排 材料利用率 
分类号:TH164
出版年,卷(期):页码:2018,43(10):179-184
摘要:

针对圆形件下料问题,从条带的利用率角度讨论了板材上圆形件的排样问题。条带上圆形件的排样一般有3种排法:并排、品排和基于品排的斜排。由于基于品排的斜排极大地减小了相邻圆形件之间和板材边界与圆形件之间的空隙,因此被认为是最好的排样法。从理论分析、数据模拟和实例计算3个方面出发,具体分析了上述3种排法的优劣,旨在得出已知毛坯规格及数量时,采用何种排样方式排入毛坯。结果显示:基于品排的斜排在绝大多数情况下,材料利用率都优于其他两种方法,且3排斜排优于2排斜排;但从实际角度出发,当某块板材排入的需求毛坯数不大于10时,应采用并排法排入毛坯,当需求毛坯数大于10时,应采用3排品排法排入毛坯。

For the cutting problem of circle pieces, the layout problem of circle pieces on a sheet was discussed from the aspect of strip utilization, and there were three methods of layout for circle pieces on a strip, such as parallel arrangement, interlaced arrangement and oblique arrangement based on interlaced arrangement. However, the oblique arrangement based on interlaced arrangement was considered to be the best method due to reducing the space between adjacent circle pieces and between the boundaries of sheet and circle pieces. Based on theoretical analysis, data simulation and example calculation, the advantages and disadvantages of the above three methods were analyzed in order to lay out by the suitable method when the specifications and quantities of blanks were known. The results show that under the most conditions, the material utilization of the oblique arrangement based on interlaced arrangement is better than that of the other two methods, and the three-row oblique arrangement is better than the tworow oblique arrangement. But for practical reasons, the parallel arrangement is optimal when the required blank number of layout on a sheet is not more than 10, otherwise the threerow interlaced arrangement is optimal.

基金项目:
国家自然科学基金资助项目(51767003)
作者简介:
张立(1994-),男,硕士研究生,E-mail:641637842@qq.com;通讯作者:陈燕(1975-),女,硕士,教授,E-mail:gxcy@foxmail.com
参考文献:

[1]Cui Y D, Wu J L, Chen H C. Generating multisection silicon steel sheet cutting patterns in the manufacturing industry of electric generators [J]. International Journal of Advanced Manufacturing Technology, 2007, 32(3-4):310-314.


[2]Cui Y D, Song X X. Applying parallelogrammic strips for cutting circles from stainless steel rolls[J]. Journal of Materials Processing Technology, 2008, 205(1):138-145.


[3]凌少东, 曹炬, 刘毅. 卷料上的圆形件优化排样[J]. 锻压技术, 2005, 30(5):30-32.


Ling S D, Cao J, Liu Y. Optimization for the cirlce packing on a roll material[J]. Forging & Stamping Technology, 2005, 30(5):30-32.


[4]Collins C R, Stephenson K. A circle packing algorithm[J]. Computational Geometry Theory & Applications, 2003, 25(3):233-256.


[5]Zhang D F, Liu Y J, Chen S D. Packing differentsized circles into a rectangular container using simulated annealing algorithm[A]. Proceedings of International Conference on Computational Intelligence[C]. Istanbul, Turkey, 2004.


[6]He Y H, Wu Y. Packing nonidentical circles within a rectangle with open length[J]. Journal of Global Optimization, 2013, 56(3):1187-1215.


[7]Cui Y D. Generating optimal Tshape cutting patterns for circular blanks[J]. Computers & Operations Research, 2005, 32(1):143-152.


[8]戈鹏, 邱厌庆, 刘柱胜. 一刀切问题的优化二叉树排样[J].计算机集成制造系统, 2011, 17(2): 329-337.


Ge P, Qiu Y Q, Liu Z S. Optimized binary tree packing of guillotine problem[J]. Computer Integrated Manufacturing Systems, 2011, 17(2):329-337.


[9]扈少华, 何宝荣, 武书彦,. 多卷材二维下料问题的一种启发式算法[J]. 锻压技术, 2017, 42(9):163-167.


Hu S H, He B R, Wu S Y, et al. A heuristic algorithm for twodimensional cutting problem with multiple coils[J]. Forging & Stamping Technology, 2017,42(9):163-167.


[10]崔耀东. 计算机排样技术及其应用[M]. 北京: 机械工业出版社, 2004.


Cui Y D. Computer Aided Nesting Technology and Application[M]. Beijing: China Machine Press, 2004.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9