网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
6016铝合金热冲压数值模拟研究
英文标题:Research on numerical simulation of hot stamping for 6016 aluminum alloy
作者:张志强1 张晓凯1 何东野1 2 
单位:1.吉林大学 材料科学与工程学院  2.吉林大学 辊锻工艺研究所 
关键词:6016铝合金 热冲压 热-力耦合 有限元分析 等效应力 厚度分布 
分类号:TG156.3
出版年,卷(期):页码:2018,43(12):16-19
摘要:

 为分析成形过程中板料的等效应力、温度及厚度变化规律,通过6016铝合金U形件热冲压实验,建立热-力耦合的有限元分析模型。研究结果表明,板料外侧的法兰区域受力较小,随着变形程度的增加,凸模圆角处受力逐渐增加,最大达到54 MPa,在凸模圆角区域板料具有最大的应力和减薄量,是产生破裂的危险区域。温度分析结果表明,成形过程中板料温度下降较快,当成形结束后板料温度由500 ℃下降到最低467 ℃,最低温度位置在零件法兰外侧。模拟与实验结果的厚度分布规律基本吻合,在零件的底面及法兰成形后厚度基本不变,厚度的减薄主要发生在凸模与凹模圆角及侧壁区域,验证了所建立的有限元模型是有效的。

 In order to analyze the variation laws of equivalent stress, temperature and thickness of sheet metal during forming process, a thermalmechanical coupled finite element analysis model was established by hot stamping experiment of 6016 aluminum alloy Ushaped parts. The results show that the stress on the flange area outside the blank is always small. With the increase of deformation, the stress in the punch fillet region increases gradually up to maximum 54 MPa, and the maximum stress and thickness reduction are located at the punch fillet region, which is the dangerous area of fracture. The results of temperature analysis show that the temperature of sheet metal decreases rapidly during forming process, and the lowest temperature of sheet metal is located outside the flange area when the temperature of sheet metal drops from 500 ℃ to 467  ℃ after forming. Then, the thickness distribution calculated by simulation is consistent with the experimental results, and the thicknesses of the bottom surface and the flange basically remain unchanged. Thus, thinning mainly lies in the punch, die fillet region and sidewall region, and the established thermomechanical coupling finite element model is verified to be effective for aluminum alloy hot stamping simulation.

基金项目:
基金项目:吉林省教育厅“十三五”科学研究规划项目(JJKH20180128KJ)
作者简介:
作者简介:张志强(1977-),男,博士,副教授 Email:zhangzq@jlu.edu.cn 通讯作者:何东野(1960-),男,博士,副教授 Email:dyhe_jlu@sina.com
参考文献:

 参考文献:


 


[1]Miller W S, Zhuang L, Bottema J, et al. Recent development in aluminium alloys for the automotive industry
[J]. Material Science and Engineering A, 2000, 280:37-49.

 


[2]Toros S, Ozturk F, Kacar I. Review of warm forming of aluminummagnesium alloys
[J]. Journal of Materials Processing Technology, 2008, 207:1-12.

 


[3]Ji S, Watson D, Fan Z, et al. Development of a super ductile die cast AlMgSi alloy
[J]. Material Science and Engineering A, 2012, 556:824-833.

 


[4]Lin J. Selection of material models for predicting necking in superplastic forming
[J]. International Journal of Plasticity, 2003, 19:469-481.

 


[5]Neugebauer R, Altan T, Geiger M, et al. Sheet metal forming at elevated temperatures
[J]. CIRP Annals, 2006, 55(2):799-816.

 


[6]Kulas M A, Green W P, Taleff E M, et al. Deformation mechanisms in superplastic AA5083 materials
[J]. Metallurgical and Materials Transaction A, 2005, 36A:1249-1261.

 


[7]Barnes A J. Superplastic forming 40 years and still growing
[J]. Journal of Materials Engineering and Performance, 2007, 16:440-454.

 


[8]McNelley T, OhIshi K, Zhilyaev A P, et al. Characteristics of the transition from grainboundary sliding to solute drag creep in superplastic AA5083
[J]. Metallurgical and Materials Transaction A, 2008, 39A:50-64.

 


[9]Chang J K, Takata K, Ichitani K, et al. Ductility of an aluminummagnesium alloy at warm and hot working temperatures
[J]. Material Science and Engineering A, 2010, 257:3822-3828.

 


[10]Li D M, Ghosh A. Tensile deformation behavior of aluminum alloys at warm forming temperatures
[J]. Material Science and Engineering A, 2003, 52:279-286.

 


[11]Fakir O, Chen S, Wang L, et al. Numerical investigation on the hot forming and colddie quenching of an aluminiummagnesium alloy into a complex component
[J]. Materials Science Forum, 2013, 765:368-372.

 


[12]Wang L, Strangwood M, Balint D, et al. Formability and failure mechanisms of AA2024 under hot forming conditions
[J]. Material Science and Engineering A, 2011, 528:2648-2656.

 


[13]Fakir O, Wang L, Balint D, et al. Numerical study of the solution heat treatment, forming, and indie quenching (HFQ) process on AA5754
[J]. International Journal of Machine Tools and Manufacture, 2014, 87:39-48.

 


[14]马闻宇,王宝雨,周靖,等.铝合金热冲压板件多目标优化
[J]. 哈尔滨工程大学学报,2015,36(9):1246-1251.

 

Ma W Y, Wang B Y, Zhou J, et al. Multiobjective optimization of hot stamping of aluminum alloy blank
[J]. Journal of Harbin Engineering University, 2015, 36(9):1246-1251.

 


[15]马闻宇,王宝雨,周靖,等.铝合金热冲压过程数值模拟分析
[J]. 航空制造技术, 2016,59(4):95-98.

 

Ma W Y, Wang B Y, Zhou J, et al. Analysis of hot stamping of aluminum alloy based on numerical simulation
[J]. Aeronautical Manufacturing Technology, 2016, 59(4):95-98.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9