网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于改进Arrhenius模型的Ti55531合金跨相区本构关系
英文标题:Constitutive relationship of Ti55531 alloy in crossphase region based on improved Arrhenius model
作者:李雷 
单位:重庆工业职业技术学院 车辆工程学院 
关键词:Ti55531合金 热压缩试验 流变应力 变形热激活能 Arrhenius本构模型 
分类号:TG146.2
出版年,卷(期):页码:2018,43(12):151-155
摘要:

 在Gleeble-3500热模拟试验机上对Ti55531合金进行高温热压缩试验,获得了变形温度为1033~1183 K、应变速率为0.001~1 s-1和压下量为60%条件下的流变应力曲线。试验结果表明,在变形初期受到加工硬化的主导,流变应力迅速上升达到峰值,随后软化作用开始占据主导,流变应力随着应变的增加有所降低。基于Arrhenius本构方程,通过数据的计算和拟合,得到该合金在两相区和单相区的变形热激活能Q分别为280.25和183.14 kJ·mol-1。同时,考虑到变形温度T对材料参数A的影响,建立了不同相区材料参数A关于变形温度T的关系,并基于得到的不同相区的Q值和A值,建立了该材料在单相区和两相区的Arrhenius本构模型。

 The hot compression tests at high temperature of Ti55531 alloy were conducted by Gleeble-3500 thermal simulation test machine, and the flow stress curves with temperatures of 1033-1183 K, strain rate of 0.001-1 s-1 and height reduction of 60% were obtained. The results show that the flow stress increases rapidly and reaches a peak value due to the predomination of workinghardening at the initial stage of deformation and decreases with the increasing  of strain due to the predomination of softening effect. On the basis of Arrhenius constitutive equation, the deformation activation energies of Ti55531 alloy in dual phase region and single phase region are 280.25 and 183.14 kJ·mol-1 respectively by data calculation and fitting. Meanwhile, considering the influence of deformation temperature T on the material parameter A, the relationship between material parameter A and deformation temperature T is developed. Subsequently, on the basis of the obtained Qvalue and Avalue, the Arrhenius constitutive models in single phase region and dual phase region are constructed. 

基金项目:
基金项目:重庆市教委科学技术研究项目(KJ1503105)
作者简介:
作者简介:李雷(1976-),男,硕士,教授 Email:lilei1976cq@163.com
参考文献:

 参考文献:


 


[1]Ahmed M, Savvakin D G, Ivasishin O M, et al. The effect of ageing on microstructure and mechanical properties of powder Ti5Al5Mo5V1Cr1Fe alloy
[J]. Materials Science & Engineering A, 2014, 605(6):89-97.

 


[2]Boyer R R, Briggs R D. The use of β titanium alloys in the aerospace industry
[J]. Journal of Materials Engineering & Performance, 2005, 14(6):681-685.

 


[3]Huang C, Zhao Y, Xin S, et al. High cycle fatigue behavior of Ti5Al5Mo5V3Cr1Zr titanium alloy with bimodal microstructure
[J]. Materials Science & Engineering A, 2016, 682:107-116.

 


[4]Barriobero V P, Requena G, Schwarz S, et al. Influence of phase transformation kinetics on the formation of α in a β-quenched Ti5Al5Mo5V3Cr1Zr alloy
[J]. Acta Materialia, 2015, 95:90-101.

 


[5]王巧玲, 唐炳涛, 郑伟. 硼钢B1500HS奥氏体状态下Arrhenius本构模型
[J]. 热加工工艺, 2016,45(6):122-126.

 

Wang Q L, Tang B T, Zheng W. Arrhenius constitutive model of boron steel B1500HS at austenitic state
[J]. Hot Working Technology, 2016,45(6):122-126.

 


[6]王进, 褚忠, 张琦. 用Arrhenius方程预测F40MnV非调质钢高温流动应力
[J]. 材料热处理学报, 2013, 34(1):182-186.

 

Wang J, Chu Z, Zhang Q. Prediction of high temperature flow stress for a microalloyed forging steel F40MnV by Arrheniustype constitutive model
[J]. Transactions of Materials and Heat Treatment, 2013, 34(1):182-186.

 


[7]Huang C, Zhao Y, Xin S, et al. Effect of microstructure on tensile properties of Ti5Al5Mo5V3Cr1Zr alloy
[J]. Materials Science & Engineering A, 2017, 693:582-591.

 


[8]Quan G Z, Wen H R, Jia P, et al. Construction of processing maps based on expanded data by BPANN and identification of optimal deforming parameters for Ti6Al4V alloy
[J]. International Journal of Precision Engineering & Manufacturing, 2016, 17(2):171-180.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9