网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于二级控制器的重型锻造液压机同步控制
英文标题:Heavy-duty forging hydraulic press synchronous control based on secondary controller
作者:裴红蕾 刘刚 赵翠萍 
单位:无锡工艺职业技术学院 
关键词:重型锻造液压机 同步控制 二级控制器 李雅普诺夫直接法 控制分配 
分类号:TP23
出版年,卷(期):页码:2019,44(1):118-122
摘要:

为了提高重型锻造液压机同步控制精度,分别设计了由内环压力控制和外环位置控制级联的二级控制器。建立了多缸单动液压机压力动态模型和滑块位置动态模型;对于内环压力控制器,构造了李雅普诺夫函数,解算了油腔压力控制率;对于外环位置控制器,由于液压系统负载具有不确定性,设计了不确定负载的自适应控制系统,通过构建位置跟踪子系统的李雅普诺夫函数,解算出自适应控制率,同时估计出负载值,通过控制分配方法将自适应控制率转换为各油腔油压期望值。经仿真验证,设计的二级控制器对恒定的不确定负载可以实现无误差估计,在1 s内实现高精度调平,调平误差控制在1.6×10-5 rad以内,1 s内实现对滑块位移的跟踪,且位移误差在1.5×10-4 m以内。

To improve the synchronous control accuracy of heavy-duty forging hydraulic press, a secondary controller including inner ring pressure controller and outer ring position controller was designed, and a dynamic model of pressure for multi-cylinder single action hydraulic press and a dynamic model of sliding block location were built. For the inner ring pressure controller, the Lyapunov function was configured to calculate the control rate of oil chamber pressure. However, for the outer ring position controller, because the load of hydraulic system was uncertain, the adaptive control system with uncertain load was designed. Through constructing the Lyapunov function of location tracking subsystem, the adaptive control rate was solved, at the same time, the load value was estimated, and the adaptive control rate was transferred into pressure expected value of each oil chamber by controlling allocation method. The simulation verification shows that the designed secondary controller can evaluate the constant uncertain load error-freely and overcome high accuracy leveling within 1 s, and the leveling error is within 1.6×10-5 rad. Besides, the secondary controller can track sliding block location within 1 s, and the location tracking error is within 1.5×10-4 m.

基金项目:
江苏省大学生创新创业训练计划项目(201713749001Y)
作者简介:
裴红蕾(1982-),女,硕士,讲师,E-mail:463400135@qq.com
参考文献:

[1]于今. 800 MN模锻液压机液压系统设计与同步控制策略研究[D]. 重庆:重庆大学,2016.


Yu J. Research on Design and Synchronous Control of Hydrualic System in 800 MN Forging Hydraulic Press [D]. Chongqing: Chongqing University, 2016.


[2]闫隆, 张洛平, 侯振宇, . 液压机多油缸同步控制关键技术研究[J]. 机械设计与制造, 2014, (6):150-152.


Yan L, Zhang L P, Hou Z Y, et al. Research on essential technology of synchronous control with multicylinder for hydraulic press[J]. Machinery Design & Manufacture, 2014, (6):150-152.


[3]吴爱国, 杨硕, 张涵,. 多缸锻造液压机的调平和跟踪控制[J]. 吉林大学学报:工学版, 2014, 44(4):1051-1056.


Wu A G, Yang S, Zhang H, et al. Leveling and tracking control of multicylinder forging hydraulic press[J]. Journal of Jilin University: Engineering and Technology Edition, 2014, 44(4): 1051-1056.


[4]刘忠伟, 青先麒. 巨型模锻液压机同步系统的模糊PID控制研究[J]. 锻压技术, 2015, 40(4):89-96.


Liu Z WQing X Q. Research on fuzzy PID control for synchronization system of giant die forging hydraulic press [J]. Forging & Stamping Technology, 2015, 40(4):89-96.


[5]汤迎红, 刘忠伟, 青先麒. 巨型模锻液压机同步系统性能影响因素的分析[J]. 锻压技术, 2014, 39(4)77-83.


Tang Y H, Liu Z WQing X Q. Analysis of the factors affecting the performance of the synchronization system for giant forcing hydraulic press [J]. Forging & Stamping Technology, 2014, 39(4): 77-83.


[6]韩金运. 基于模糊滑模算法的四缸等温锻造液压机同步控制方法研究[D]. 合肥:合肥工业大学, 2017.


Han J Y. Research on Synchronous Control Method of Fourcylinder Isothermal Forging Hydraulic Press Based on Fuzzy Sliding Mode Algorithm [D]. Hefei: Hefei University of Technology, 2017.


[7]夏卫明, 嵇宽斌, 杨维民. 液压机高效吨位转换技术[J]. 锻压装备与制造技术, 2017, 52(5):9-11.


Xia W M, Ji K B, Yang W M. High efficiency tonnage conversion technology of hydraulic press [J]. China Metalforming Equipment & Manufacturing Technology, 2017, 52(5):9-11.


[8]杨继东, 车海伟, 刘昆, . 大型模锻压机多液压缸同步控制系统的研究[J]. 机床与液压, 2015, 43(14):85-87.


Yang J D, Che H W, Liu K, et al. Research on large forging presses multicylinder synchronous control system [J]. Machine Tool & Hydraulics, 2015, 43(14):85-87.


[9]Lapin K S. Lyapunov direct method in the analysis of Lagrange instability with respect to part of the variables[J]. Differential Equations, 2013, 49(1):132-135.


[10]于蓉蓉, 魏学业, 吴小进,. 基于李雅普诺夫直接法的自适应预测电流控制算法[J]. 农业工程学报, 2011, 27(8):271-276.


Yu R R, Wei X Y, Wu X J, et al. Selfadaptive predictive current control algorithm based on Lyapunov′s direct method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(8):271-276.


[11]马文飞, 吴孔平. 基于李雅普诺夫稳定性的微电网分析方法[J]. 电测与仪表, 2018, 55(12)27-31.


Ma W F, Wu K P. Analysis method of microgrid based on Lyapunov stability [J]. Electrical Measurement & Instrumentation, 2018, 55(12)27-31.


[12]任锐,马大为,姚建勇,等. 基于动态分配的多缸驱动承载平台的调平控制[J]. 机床与液压,2018,4616):87-91.


Ren R, Ma D W, Yao J Y, et al. Levelling control of multicylinders actuated bearing platforms with dynamic control allocation [J]. Machine Tool & Hydraulics, 2018,4616):87-91.


[13]章鸿翔, 薛雅丽, 王佳辉. 推力矢量飞行器动态控制分配方法研究[J]. 电光与控制, 2016(12):71-76.


Zhang H X, Xue Y L, Wang J H. Research on dynamic control allocation method for aircraft with thrust vector[J]. Electronics Optics Control, 2016(12):71-76.


[14]易坚, 陈勇, 董新民,. 多操纵面飞机交叉耦合鲁棒控制分配策略[J]. 控制与决策, 2017, 32(1):171-175.


Yi J, Chen Y, Dong X M, et al. Robust control allocation with interactions for multiple effectors aircraft[J]. Control and Decision, 2017, 32(1):171-175.


 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9