[1]于今. 800 MN模锻液压机液压系统设计与同步控制策略研究[D]. 重庆:重庆大学,2016.
Yu J. Research on Design and Synchronous Control of Hydrualic System in 800 MN Forging Hydraulic Press [D]. Chongqing: Chongqing University, 2016.
[2]闫隆, 张洛平, 侯振宇, 等. 液压机多油缸同步控制关键技术研究[J]. 机械设计与制造, 2014, (6):150-152.
Yan L, Zhang L P, Hou Z Y, et al. Research on essential technology of synchronous control with multicylinder for hydraulic press[J]. Machinery Design & Manufacture, 2014, (6):150-152.
[3]吴爱国, 杨硕, 张涵,等. 多缸锻造液压机的调平和跟踪控制[J]. 吉林大学学报:工学版, 2014, 44(4):1051-1056.
Wu A G, Yang S, Zhang H, et al. Leveling and tracking control of multicylinder forging hydraulic press[J]. Journal of Jilin University: Engineering and Technology Edition, 2014, 44(4): 1051-1056.
[4]刘忠伟, 青先麒. 巨型模锻液压机同步系统的模糊PID控制研究[J]. 锻压技术, 2015, 40(4):89-96.
Liu Z W,Qing X Q. Research on fuzzy PID control for synchronization system of giant die forging hydraulic press [J]. Forging & Stamping Technology, 2015, 40(4):89-96.
[5]汤迎红, 刘忠伟, 青先麒. 巨型模锻液压机同步系统性能影响因素的分析[J]. 锻压技术, 2014, 39(4)77-83.
Tang Y H, Liu Z W,Qing X Q. Analysis of the factors affecting the performance of the synchronization system for giant forcing hydraulic press [J]. Forging & Stamping Technology, 2014, 39(4): 77-83.
[6]韩金运. 基于模糊滑模算法的四缸等温锻造液压机同步控制方法研究[D]. 合肥:合肥工业大学, 2017.
Han J Y. Research on Synchronous Control Method of Fourcylinder Isothermal Forging Hydraulic Press Based on Fuzzy Sliding Mode Algorithm [D]. Hefei: Hefei University of Technology, 2017.
[7]夏卫明, 嵇宽斌, 杨维民. 液压机高效吨位转换技术[J]. 锻压装备与制造技术, 2017, 52(5):9-11.
Xia W M, Ji K B, Yang W M. High efficiency tonnage conversion technology of hydraulic press [J]. China Metalforming Equipment & Manufacturing Technology, 2017, 52(5):9-11.
[8]杨继东, 车海伟, 刘昆, 等. 大型模锻压机多液压缸同步控制系统的研究[J]. 机床与液压, 2015, 43(14):85-87.
Yang J D, Che H W, Liu K, et al. Research on large forging presses multicylinder synchronous control system [J]. Machine Tool & Hydraulics, 2015, 43(14):85-87.
[9]Lapin K S. Lyapunov direct method in the analysis of Lagrange instability with respect to part of the variables[J]. Differential Equations, 2013, 49(1):132-135.
[10]于蓉蓉, 魏学业, 吴小进,等. 基于李雅普诺夫直接法的自适应预测电流控制算法[J]. 农业工程学报, 2011, 27(8):271-276.
Yu R R, Wei X Y, Wu X J, et al. Selfadaptive predictive current control algorithm based on Lyapunov′s direct method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(8):271-276.
[11]马文飞, 吴孔平. 基于李雅普诺夫稳定性的微电网分析方法[J]. 电测与仪表, 2018, 55(12):27-31.
Ma W F, Wu K P. Analysis method of microgrid based on Lyapunov stability [J]. Electrical Measurement & Instrumentation, 2018, 55(12):27-31.
[12]任锐,马大为,姚建勇,等. 基于动态分配的多缸驱动承载平台的调平控制[J]. 机床与液压,2018,46(16):87-91.
Ren R, Ma D W, Yao J Y, et al. Levelling control of multicylinders actuated bearing platforms with dynamic control allocation [J]. Machine Tool & Hydraulics, 2018,46(16):87-91.
[13]章鸿翔, 薛雅丽, 王佳辉. 推力矢量飞行器动态控制分配方法研究[J]. 电光与控制, 2016,(12):71-76.
Zhang H X, Xue Y L, Wang J H. Research on dynamic control allocation method for aircraft with thrust vector[J]. Electronics Optics & Control, 2016,(12):71-76.
[14]易坚, 陈勇, 董新民,等. 多操纵面飞机交叉耦合鲁棒控制分配策略[J]. 控制与决策, 2017, 32(1):171-175.
Yi J, Chen Y, Dong X M, et al. Robust control allocation with interactions for multiple effectors aircraft[J]. Control and Decision, 2017, 32(1):171-175.
|