网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
脉冲电流密度对汽车用Al-Mg-Si-Cu铝合金拉伸力学性能的影响
英文标题:Influence of pulse current density on tensile mechanical properties of Al-Mg-Si-Cu aluminum alloy for automobile
作者:原涛 赵跃文 
单位:太原工业学院 
关键词:Al-Mg-Si-Cu铝合金 脉冲电流 力学性能 微观组织 断口形貌 
分类号:TG146.2
出版年,卷(期):页码:2019,44(1):171-175
摘要:

以汽车用Al-Mg-Si-Cu铝合金作为实验对象,研究了不同脉冲电流密度(100,150和200 A·mm-2)下得到的Al-Mg-Si-Cu铝合金试样的力学性能,并对试样的微观组织形貌进行了光学显微镜与扫描电镜表征。研究结果表明:试样受到单脉冲电流作用后会导致温度出现迅速上升;当对试样通入辅助电流后,流动应力也会发生更加明显地下降。在3种脉冲电流密度下,试样断裂后的应变量分别为0.246,0.256和0.262。当脉冲电流保持恒定时,随着应变值不断变大,应力降值将会表现出线性增长的趋势;随着脉冲电流密度的增加,应力降值也会更加明显。随着脉冲电流密度上升,合金组织的晶界区域生成许多细小的等轴晶。当试样中通入脉冲电流后,试样的宏观断口发生明显的颈缩现象,纤维区显著增大,并产生众多撕裂棱。

For Al-Mg-Si-Cu aluminum alloy used for automobile, its mechanical properties under different pulse current densities (100, 150, 200 A·mm-2) were studied, and the microstructure morphology of sample was obtained by the optical microscope and scanning electron microscopy. The results show that the temperature rises rapidly when the sample is subjected to a single pulse current. When the sample is connected to an auxiliary current, the flow stress also decreases significantly. And the strains after sample fracture under three pulse current densities are 0.246, 0.256 and 0.262, respectively. When the pulse current remains constant, the stress drop will show a linear growth trend with the increasing of strain values. However, with the increasing of pulse current density, the stress drop is more obvious, and many small isometric crystals are generated in the grain boundary region of alloy tissue. Thus, when the pulse current is passed into the sample, the macroscopic fracture of sample will have significant necking phenomenon, the fiber area is significantly enlarged, and many tearing edges are produced.
 

基金项目:
山西省自然科学基金资助项目(20140321014-02)
作者简介:
原涛(1971-)男,学士,讲师,E-mail:bengtannuo054101@126.com
参考文献:

[1]郭端路,黄江华, 陆辛. Al-Mg-Si系铝合金不同变形条件下的组织力学行为[J].锻压技术,2017,42(5): 141-146.


Guo D L, Huang J H, Lu X. Microstructure and mechanical property of aluminum alloy Al-Mg-Si under different deformation conditions[J]. Forging & Stamping Technology, 2017,42(5): 141-146.


[2]杨治辉,吴耀金,薛勇,等. 循环扩挤平面变形对7A04铝合金组织与性能的影响 [J]. 塑性工程学报, 2017, 24(1): 47-54.


Yang Z H, Wu Y J, Xue Y, et al. Effect of cyclic expansion-extrusion plane deformation on microstructure and mechanical properties of 7A04 aluminum alloy[J]. Journal of Plasticity Engineering, 2017, 24(1): 47-54.


[3]金淳,黄亮,李建军, . 不同热处理状态下成形速率对2219铝合金成形极限的影响[J]. 塑性工程学报,2017, 24(1): 125-132.


Jin C, Huang LLi J J, et al. Influence of forming rate on forming limit of 2219 aluminum alloy under different heat treatment conditions [J]. Journal of Plasticity Engineering, 2017, 24(1):125-132.


[4]付佳,晋会锦,吴素君,.热处理对2A14铝合金组织和性能的影响[J].材料热处理学报,2016,37(1): 189-194.


Fu J, Jin H J, Wu S J, et al. Effect of heat treatment on microstructure and properties of 2A14 aluminum alloy[J]. Transactions of Materials and Heat Treatment, 2016,37(1): 189-194.


[5]刘洲,何玉怀,刘昌奎,.ZL101铝合金的拉伸断裂特征[J].机械工程材料,2014,38(2):82-86.


Liu Z, He Y H, Liu C K, et al. Characteristics of ZL101 aluminum alloy tensile fracture[J]. Materials for Mechanical Engineering, 2014,38(2):82-86.


[6]王雷,李玉龙,索涛,.航空常用铝合金动态拉伸力学性能探究[J].航空材料学报,2013,33(4):71-77.


Wang L, Li Y L, Suo T, et al. Mechanical behavior of commonly used aeronautical aluminum alloys under dynamic tension[J]. Journal of Aeronautical Materials, 2013,33(4):71-77.


[7]丁永根,王薄笑天,李萍,等. 7A60铝合金高压扭转变形微观组织及力学性能分析[J].塑性工程学报,2017,242):149-154.


Ding Y GWang B X TLi Pet al. Analysis on microstructures and mechanical properties of 7A60 aluminum alloy after high pressure torsion[J]. Journal of Plasticity Engineering2017,242):149-154.


[8]付宇明,杜文连,李田,等. 脉冲放电对6061铝合金焊接接头组织及力学性能的影响[J]. 塑性工程学报,2017,244):77-82.


Fu Y MDu W LLi Tet al. Effect of pulse discharge on microstructure and mechanical properties of 6061 aluminum alloy welded joint [J]. Journal of Plasticity Engineering2017,244):77-82.


[9]朱才朝,罗家元,李大峰,.7075铝合金板预拉伸工艺研究[J].机械工程学报,2011,47(24):57-62.


Zhu C C, Luo J Y, Li D F, et al. Numerical simulation and experimental investigation of the aluminum alloy quenching process by considering the flow stress characteristic[J]. Journal of Mechanial Engineering, 2011,47(24):57-62.


[10]张园园,吴运新,李丽敏,.7075铝合金预拉伸板淬火后残余应力的有限元模拟[J].热加工工艺,2008,37(14): 88-91.


Zhang Y Y, Wu Y X, Li L M, et al. Finite element simulation of residual stress in pre-stretching thick-plates of 7075 aluminum alloy after quenching[J]. Hot Working Technology, 2008,37(14): 88-91.


[11]冉广,周敬恩,王永芳.铸造A356铝合金的拉伸性能及其断口分析[J].稀有金属材料与工程,2006,35(10): 1620-1624.


Ran G, Zhou J E, Wang Y F. Study on tensile properties and fractography of cast A356 aluminum alloy[J]. Rare Metal Materials and Engineering, 2006,35(10): 1620-1624.


[12]李敬勇,章明明,李鹰,.预拉伸对铝合金焊接残余应力和变形的影响[J].热加工工艺,2005,34(12):15-17.


Li J Y, Zhang M M, Li Y, et al. Effect of pre-tension on welding residual stresses and distortions of aluminum alloy[J]. Hot Working Technology, 2005,34(12):15-17.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9