网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
新型镁合金机械外壳的冲锻工艺优化
英文标题:Optimization on stamping and forging process for new type magnesium
作者:李磊  姬川  应纪来 
单位:郑州旅游职业学院 河南地矿职业学院 河南农业大学 
关键词:机械外壳 Mg-3Mn-0.5Ti-0.3V新型镁合金 冲锻工艺 冲击性能 耐腐蚀性能 
分类号:TG316
出版年,卷(期):页码:2019,44(3):10-16
摘要:

采用不同工艺对Mg-3Mn-0.5Ti-0.3V新型镁合金机械外壳试样进行冲锻试验,并通过冲击性能和耐腐蚀性能进行测试、比较和分析。结果表明:随反顶力和压边力的增大、锻造温度的升高,试样冲击性能和耐腐蚀性能先提升后下降。与2 kN反顶力相比,4 kN反顶力使试样的冲击吸收功增大22.1%、腐蚀电位正移0.077 V;与2 kN压边力相比,3.5 kN压边力使试样的冲击吸收功增大25.8%、腐蚀电位正移了0.086 V;与290 ℃锻造温度相比,380 ℃锻造温度使试样的冲击吸收功增大20.3%、腐蚀电位正移0.083 V。Mg-3Mn-0.5Ti-0.3V新型镁合金机械外壳冲锻时的反顶力优选4 kN、压边力优选3.5 kN、锻造温度优选380 ℃。

The stamping and forging tests of Mg-3Mn-0.5Ti-0.3V new type magnesium alloy mechanical shell samples were carried out by different processes, and tested, compared and analyzed by impact property and corrosion resistance. The results show that the impact property and corrosion resistance of the specimens increase firstly and then decrease with the increase of counterforce, blank holder force and forging temperature. Compared with counterforce of 2 kN, counterforce of 4 kN increases the impact absorption energy of the specimen by 22.1% and shifts the corrosion potential positively by 0.077 V. Compared with blank holder force of 2 kN, blank holder force of 3.5 kN increases the impact absorption energy of the specimen by 25.8% and shifts the corrosion potential positively by 0.086 V. Compared with forging temperature of 290 ℃, forging temperature of 380 ℃ increases the impact absorption energy of the specimen by 20.3% and shifts the corrosion potential positively by 0.083 V. Thus, the optimum counterforce, blank holder force and forging temperature of Mg-3Mn-0.5Ti-0.3V new type magnesium alloy mechanical shell are 4 kN, 3.5 kN and 380 ℃, respectively.

基金项目:
中国国家留学基金留金项目([2018]10015);河南省高等教育教学改革研究项目(2014SJGLX467)
作者简介:
李磊(1978-),男,硕士,副教授,E-mail:375330254@qq.com
参考文献:


[1]杨程,梁凡,杨欣怡, 等. 连接杆的冲锻连续成形工艺
[J]. 锻压技术, 2018, 43(6):20-23.


Yang C, Liang F, Yang X Y,et al. Stamping-forging progressive forming process of connecting rod
[J]. Forging & Stamping Technology, 2018, 43(6):20-23.



[2]张仕林,黄森森,马英杰, 等. 管路接头用钛合金锻件显微组织及硬度分析
[J]. 塑性工程学报, 2018, 25(2):161-167.


Zhang S L, Huang S S, Ma Y J, et al. Investigation of microstructure and hardness of titanium forging for pipe joint
[J]. Journal of Plasticity Engineering, 2018, 25(2):161-167.



[3]罗哲民,李烈军,倪东惠, 等.AZ91D超薄笔记本电脑外壳压铸工艺参数优化
[J].特种铸造及有色合金,2016,36(10):1057-1060.


Luo Z M, Li L J, Ni D H, et al. Optimization of the die casting process parameters of AZ91D slim laptop case
[J]. Special Casting & Nonferrous Alloys, 2016,36(10):1057-1060.



[4]王家弟, 王业双, 卢晨, 等. 压铸镁合金选择的模糊综合评判方法
[J].机械科学与技术,2003,22(2):223-225.


Wang J D, Wang Y S, Lu C, et al. On selection of die casting magnesium alloys based on fuzzy decision
[J]. Mechanical Science and Technology, 2003,22(2):223-225.



[5]刘志勇, 许庆彦, 柳百成, 等. 压铸工艺对镁合金组织性能影响的研究
[J].铸造, 2004,53(8):652-654.


Liu Z Y, Xu Q Y, Liu B C, et al. Research on the influence of die casting process on structure and performance of magnesium al-loy
[J]. Foundry, 2004,53(8):652-654.



[6]杨添雯,宋生奎.低温多向锻压对电动机外壳用AZ80镁合金组织与性能的影响
[J].轻合金加工技术, 2016,44(11):31-35.


Yang T W, Song S K. Effects of low-temperature multi-directional forging upon microstructure and properties of AZ80 magnesium alloy applied for the motor housing
[J]. Light Alloy Fabrication Technology, 2016,44(11):31-35.



[7]杨林, 胡斌, 陶欣慈,等. T6处理对真空压铸AM50镁合金腐蚀行为的影响
[J].沈阳工业大学学报,2017,39(3):264-268.


Yang L, Hu B, Tao X C, et al. Effect of T6 treatment on corrosion behavior of vacuum die casting AM50 magnesium alloy
[J]. Journal of Shenyang University of Technology, 2017, 39(3):264-268.



[8]祁明凡, 康永林, 朱国明, 等. 镁合金薄壁件压铸成形的工艺及数值模拟
[J].中国有色金属学报,2017,27(3):448-458.


Qi M F, Kang Y L, Zhu G M, et al. Process and numerical simulation of high pressure die-casting magnesium alloy thin-wall parts
[J]. The Chinese Journal of Nonferrous Metals,2017,27(3):448-458.



[9]莫玉梅. 基于神经网络的镁合金汽车车轮锻压工艺优化
[J].轻合金加工技术,2016,44(5):28-32,62.


Mo Y M. Forging process optimization of magnesium alloy automobile wheels based on neural network
[J]. Light Alloy Fabrication Technology, 2016,44(5):28-32,62.



[10]逯志浩, 龙思远, 刘娟, 等. 复杂镁合金底罩压铸充型工艺优化
[J]. 特种铸造及有色合金, 2012,32(11): 1015-1018.


Lu Z H, Long S Y, Liu J, et al. Optimization of filling process of magnesium alloy bottom cover
[J]. Special Casting & Nonferrous Alloys, 2012, 32(11): 1015-1018.



[11]吴雄喜, 冷志杰. 3D打印技术在弧面凸轮精密制造中的应用研究
[J]. 兵器材料科学与工程, 2016, 39(2):72-75.


Wu X X, Leng Z J. Application of 3D printing technology in precision manufacturing of globoidal cam
[J]. Ordnance Material Science and Engineering, 2016, 39(2):72-75.



[12]赵震,白雪娇,胡成亮. 精密锻造技术的现状与发展趋势
[J]. 锻压技术, 2018, 43(7):90-95.


Zhao Z,Bai X J,Hu C L. Status and development trend of precision forging technology
[J]. Forging & Stamping Technology, 2018, 43(7):90-95.


 

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9