[1]朱若林, 张利涛, 王俭秋, 等. 核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为[J]. 中国腐蚀与防护学报, 2018, 38(1):54-61.
Zhu R L, Zhang L T, Wang J Q, et al. Stress corrosion crack propagation behavior of elbow pipe of nuclear grade 316LN stainless steel in high temperature high pressure water[J]. Journal of Chinese Society for Corrosion and Protection, 2018, 38(1): 54-61.
[2]Li X Q, Zhao J J, Xu J C, et al. Mechanical properties and defective effects of 316LN stainless steel by first-principles simulations[J]. Journal of Materials Science & Technology, 2011, 27(11):1029-1033.
[3]Xu D M, Li G Q, Wan X L, et al. Deformation behavior of high yield strength-high ductility ultrafine-grained 316LN austenitic stainless steel[J]. Materials Science and Engineering: A, 2017, 688:407-415.
[4]向大林, 辜荣如. CAP1400核电厂主管道112吨电渣锭研制[J]. 中国核电, 2013, 6(2):105-110.
Xiang D L, Gu R R. Development of 112 t ESR ingot for CAP1400 main pipe[J].China Nuclear Power,2013, 6(2):105-110.
[5]刘江林, 曾卫东, 谢英杰, 等. 基于应变补偿TC4-DT钛合金高温变形本构模型[J]. 稀有金属材料与工程, 2015, 44(11):2742-2746.
Liu J L, Zeng W D, Xie Y J, et al. Constitutive model of TC4-DT Titanium alloy at elevated temperature considering compensation of strain[J]. Rare Metal Materials and Engineering, 2015, 44(11):2742-2746.
[6]冯建铭, Eliane Giraud, 曹旭东, 等. 考虑应变补偿的Al2024合金本构方程研究[J]. 塑性工程学报, 2017, 24(6):151-156.
Feng J M, Eliane Giraud, Cao X D, et al. Study on constitutive equations of 2024 aluminum alloy considering the compensation of strain[J]. Journal of Plasticity Engineering, 2017, 24(6):151-156.
[7]陈学文, 王纳纳, 皇涛, 等. 超超临界转子用X12钢高温变形行为及基于应变补偿的本构模型[J]. 材料热处理学报, 2018, 39(5):134-139.
Chen X W, Wang N N, Huang T, et al. Hot deformation behavior of X12 steel for ultra-supercritical rotor and its constitutive model based on strain compensation[J]. Transations of Materials and Heat Treatment, 2018, 39(5):134-139.
[8]Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.
[9]任树兰, 刘建生, 李景丹, 等. 316 LN钢ESR材料热变形行为及高温塑性本构方程[J]. 锻压技术, 2017, 42(10):162-165.
Ren S L, Liu J S, Li J D, et al. Thermal deformation behavior and high temperature plastic constitutive equation of ESR steel 316LN[J]. Forging & Stamping Technology, 2017, 42(10):162-165.
[10]罗锐, 程晓农, 徐桂芳, 等. 新型Fe-20Cr-30Ni-0.6Nb-2Al-Mo合金的热变形行为及本构模型[J]. 稀有金属, 2017, 41(2):132-139.
Luo R, Cheng X N, Xu G F, et al. Constitutive modeling for elevated temperature flow behavior of Fe-200Cr-30Ni-0.6Nb-2Al-Mo alloy[J]. Chinese Journal of Rare Metals, 2017, 41(2):132-139.
[11]陈刚, 陈伟, 马力, 等. Al-12Zn-2.4Mg-1.2Cu合金流变行为的应变补偿Arrhenius本构模型研究[J]. 稀有金属材料与工程, 2015, 44(9):2120-2125.
Chen G, Chen W, Ma L, et al. Strain-compensated Arrhenius-type constitutive model for flow behavior of Al-12Zn-2.4Mg-1.2Cu alloy[J]. Rare Metal Materials and Engineering, 2015, 44(9):2120-2125.
[12]朱洪军. 高强韧Ti6246合金热变形行为及应变补偿型本构模型[J]. 金属热处理, 2016, 41(8):184-188.
Zhu H J. Hot deformation behavior and strain compensation constitutive model of high strength and high toughness Ti6246 alloy[J]. Heat Treatment of Metals, 2016, 41(8):184-188.
|