网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
奥氏体不锈钢321合金不同应变速率下动态再结晶分析
英文标题:Dynamic recrystallization analysis on austenitic stainless steel 321 alloy at different strain rates
作者:解婧陶 王钦娟 王璐银 
单位:福建船政交通职业学院 中国石油天然气集团有限公司 
关键词:不锈钢 动态再结晶 应变速率 链状组织 孪晶 
分类号:TG146.4
出版年,卷(期):页码:2019,44(6):178-182
摘要:

以奥氏体不锈钢321合金为研究对象,通过EBSD和TEM等方法,分析在950~1250 ℃变形温度和0.001~1 s-1应变速率条件下的不连续动态再结晶(DDRX)行为。研究结果表明:当变形温度上升后,合金中更多晶粒发生了再结晶转变的过程,同时,再结晶晶粒的尺寸也显著增大;当应变速率上升后,再结晶晶粒的数量发生了降低的现象,并且其尺寸也明显减小。在温度较高而应变速率较小的情况下,晶粒将会在三叉晶界部位发生形核,此时晶界也很容易发生迁移的现象;而在较低温度以及应变速率很大的情况下,稠密位错墙也会对再结晶形核过程造成较大影响。当真应变逐渐增大后,小角晶界随之减少,同时形成了更多大角晶界与孪晶。与传统DDRX相比可以发现,此时的孪晶在初始变形阶段出现了降低的现象。

For austenitic stainless steel 321 alloy, the discontinuous dynamic recrystallization (DDRX) behavior was analyzed by EBSD and TEM methods under the deformation temperatures of 950-1250 ℃ and strain rates of 0.001-1 s-1. The results show that the more grains in the alloy occurs the recrystallization transition when the deformation temperature increases, and the size of recrystallized grains increases significantly. When the strain rate increases, the number of recrystallized grains decreases, and the size of recrystallized grains decreases obviously. However, when the temperature is higher and the strain rate is lower, the nucleation of grain occurs at the trigeminal grain boundary, and the grain boundary migrates easily. Moreover, under the condition of low temperature and high strain rate, the dense dislocation wall also has great influence on the recrystallization nucleation process. When the true strain increases gradually, the small angle boundary decreases, and more big angle boundaries and twin crystal are formed. Compared with the traditional DDRX, it can be found that the twin crystal decreases during the initial deformation stage.

基金项目:
福建省中青年教师教育科研项目(JAT160721)
作者简介:
解婧陶(1984-),女,硕士,讲师 E-mail:liyingji136924@126.com
参考文献:


[1]Sakai T, Belyakov A, Kaibyshev R, et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions
[J]. Prog. Mater. Sci., 2014, 60(1): 130-207.



[2]孙卫鹏,栾道成,李京筱,等. 301L不锈钢的塑性变形特征研究
[J]. 塑性工程学报,2017,24(4):95-102.


Sun W P,Luan D C,Li J X,et al. Research on plastic deformation characteristic of 301L stainless steel
[J]. Journal of Plasticity Engineering,2017,24(4):95-102.



[3]拓雷锋,周根树,康喜唐,等. 坯料圆角对不锈钢挤压管外表面的影响
[J].塑性工程学报,2017,24(2):70-74,81.


Tuo L F,Zhou G S,Kang X T,et al.Influence of billet fillet on outside surface of extrusion stainless tube
[J].Journal of Plasticity Engineering,2017,24(2):70-74,81.



[4]Doherty R D, Hughes D A, Humphreys F J, et al. Current issues in recrystallization:A review
[J]. Materials Science and Engineering A, 1997, 238(2):219-274.



[5]Huang K, Logé R E. A review of dynamic recrystallization phenomena in metallic materials
[J]. Materials & Design, 2016,111: 548-574.



[6]Huang K, Marthinsen K, Zhao Q L, et al. The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials
[J]. Prog. Mater. Sci., 2018, 92: 284-359.



[7]Zhu S Q, Yan H G, Liao X Z, et al. Mechanisms for enhanced plasticity in magnesium alloys
[J].Acta Mater., 2015, 82: 344-355.



[8]Azarbarmas M, Aghaie-Khafri M, Cabrera A M, et al. Dynamic re crystallization mechanisms and twining evolution during hot deformation of Inconel 718
[J]. Mater. Sci. Eng., 2016, 678: 137-152.



[9]Beck M, Morse M, Corolewski C, et al. Understanding the effect of grain boundary character on dynamic recrystallization in stainless steel 316L
[J]. Metallurgical and Materials Transactions A, 2017, 48(8):3831-3842.



[10]Lu J, Hultman L, Holmstrm E, et al. Stacking fault energies in austenitic stainless steels
[J].Acta Mater., 2016, 111: 39-46.



[11]Wang L, Liu F, Cheng J J, et al. Hot deformation characteristics and processing map analysis for nickel-based corrosion resistant al-loy
[J]. J.Alloys Compd., 2015, 623: 69-78.



[12]Wang L, Liu F, Zuo Q, et al. Processing map and mechanism of hot deformation of a corrosion-resistant nickel-based alloy
[J]. J. Mater. Eng. Perform., 2017, 26(1): 392-406.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9