网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
核燃料中子吸收板生产核心技术研究与应用
英文标题:Research and application on core technology of nuclear fuel neutron absorption plate production
作者:张君 杨建 陈永甲 薛菲菲 张宗元 
单位:中国重型机械研究院股份公司 西北工业大学 
关键词:挤压 核燃料 中子吸收板 速度控制 温度控制 铝基碳化硼陶瓷增强材料 
分类号:TG37
出版年,卷(期):页码:2019,44(7):21-28
摘要:

介绍了核燃料中子吸收板的生产装备和工艺,采用理论分析和数值模拟相结合的方法,确定了合理的坯料加热温度、挤压筒加热温度、挤压速度参数,并在5和26 MN金属挤压机上进行了试验,确定了核燃料中子吸收板的挤压速度为0.8~1.0 mm·s-1,挤压筒加热温度为490~510 ℃;按照挤压速度要求,开发了挤压速度低速闭环精确控制系统,实现了核燃料中子吸收板的低速稳定挤压;按照挤压温度要求,开发了带有在线模具加热的挤压温度准确控制系统。在此基础上建立了36 MN 核燃料中子吸收板挤压生产线,在国内首次挤压生产了难变形铝基碳化硼中子吸收板,板材各项数据均满足核燃料储存器的要求。

The production equipment and process of nuclear fuel neutron absorption plate were introduced, and the reasonable parameters of heating temperature of billet, heating temperature of extrusion container and extrusion speed were determined by combining theoretical analysis with numerical simulation. Then, the experiments were conducted by 5 and 26 MN metal extrusion presses, and the extrusion speed of nuclear fuel neutron absorption plate of 0.8-1.0 mm·s-1 and the heating temperature of extrusion container of 490-510 ℃ were determined. Furthermore, according to the extrusion speed requirement, a closed-loop precise control system of extrusion speed at low speed was developed to realize stable extrusion of nuclear fuel neutron absorption plate at low speed, and according to the extrusion temperature requirement, an accurate extrusion temperature control system with on-line die heating was developed. On this basis, a 36 MN extrusion production line for nuclear fuel neutron absorption plate was established, and the neutron absorption plates of aluminum-based boron carbide which is difficult in deformation was extruded in China for the first time. The results show that all data of plates meet the requirements of nuclear fuel storage tank.

基金项目:
国家科技重大专项(2011ZX04016-081);国家“万人计划”科技创新领军人才特殊支持项目和陕西省重点科技创新团队(2013KCT-10)
作者简介:
张君(1970-),男,博士,教授,E-mail:chungjun@163.com
参考文献:

[1]卢炜煌. 世界乏燃料后处理现状与分析[J].江西化工,2018, (6):10-12.


Lu W H. Status and analysis of spent fuel after treatment in the world [J]. Jiangxi Chemical Industry, 2018, (6): 10-12.


[2]刘桂荣,裴燕斌.B中子吸收材料的研究进展[J].粉末冶金工业,2018,28(5):1-5.


Liu G R, Pei Y B. Research progress of boron containing neutron absorption materials [J]. Powder Metallurgy Industry, 2018, 28 (5): 1-5.


[3]石悠, 刘桂荣, 张亚东, . 国产B4C颗粒增强铝基复合材料的耐辐照性能研究[J].粉末冶金工业,2018,28(2):30-34.


Shi Y, Liu G R, Zhang Y D, et al. Study on radiation resistance of domestic B4C particle reinforced aluminum matrix composite [J]. Powder Metallurgy Industry, 2018, 28 (2): 30-34.


[4]李宇力. 铝基B4C中子吸收材料的板材制备及组织性能研究[D]. 太原:太原理工大学,2017.


Li Y L. The Fabrication, Microstructure and Properties of B4C/Al Neutron Absorber Composite Plates[D]. Taiyuan: Taiyuan University of Technology, 2017.


[5]中核. 中核集团自主研发中子吸收材料进入工程应用阶段[J].军民两用技术与产品,2017, (4):33.


CNPC. CNPC independently developed neutron shielding absorption materials into the engineering application stage [J]. Dual Use Technologies & Products, 2017, (4): 33.


[6]张哲维. 基于MC法的乏燃料贮存用铝基复合材料屏蔽性能研究[D]. 太原:太原理工大学, 2015.


Zhang Z W. Study on the Shielding Properties of Aluminum Matrix Composite Used in Spent Fuel Storage Using Monte Carlo Method[D]. Taiyuan: Taiyuan University of Technology, 2015.


[7]王美玲,李刚,陈乐, . B4C-Al中子吸收材料拉伸性能及断裂机理[J].原子能科学技术,2014,48(5):883-887.


Wang M L, Li G, Chen L, et al. Tensile property and fracture mechanism of B4C-Al neutron absorber material [J]. Atomic Energy Science and Technology, 2014, 48 (5): 883-887.


[8]张鹏. 高含量铝基碳化硼中子吸收材料的制备及性能研究[D]. 太原: 太原理工大学,2014.


Zhang P. Preparation and Properties of High Content B4C/Al Neutron Absorer[D]. Taiyuan: Taiyuan University of Technology, 2014.


[9]于方丽,倪澍,白宇,. 定向多孔陶瓷的制备与应用进展[J]. 稀有金属,2017,41(2):211-220.


Yu F L, Ni S, Bai Y, et al. Preparation and application progress of porous ceramics with unidirectionally oriented pores [J].Chinese Journal of Rare Metals,2017,41(2):211-220.


[10]魏军. 金属挤压机[M]. 北京: 化学工业出版社, 2006.


Wei J. Metal Extruder[M]. Beijing: Chemical Industry Press, 2006.


[11]陈彪彪. 铝型材挤压的数值模拟及工艺研究[D]. 广州:广东工业大学,2012.


Chen B B. Numerical Simulation and Research of Aluminium Extrusion [D]. Guangzhou: Guangdong University of Technology, 2012.


[12]甘纯,刘旭,张超.基于Deform-3D铝棒材热挤压速度的优化[J]. 锻压装备与制造技术, 2017, 52(4):75-77.


Gan C, Liu X, Zhang C. Optimization of hot extrusion velocity for aluminum alloy bar based on Deform-3D [J]. China Metalforming Equipment & Manufacturing Technology, 2017, 52 (4):75-77.


[13]成小乐,郑文达,杨建, . 难变形合金挤压机最大挤压速度控制分析[J]. 重型机械, 2013, (6):25-27.


Cheng X L, Zheng W D, Yang J, et al. Investigation on the maximum extrusion speed control of the difficult-to-deform alloy press [J]. Heavy Machinery, 2013, (6): 25-27.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9