网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
搅拌摩擦加工制备镁合金表面复合层的显微组织和力学性能
英文标题:Microstructure and mechanical properties of Mg alloy surface composite  layer fabricated by friction stir processing
作者:李天麒 闫原原 谢辉 唐健江 吴坤尧 张金龙 乔柯 
单位:1.西安航空学院 材料工程学院 陕西 西安 710077 2.西安建筑科技大学 冶金工程学院 陕西 西安 710055 3. 西安建筑科技大学 功能材料加工国家地方联合工程研究中心 陕西 西安 710055 
关键词:搅拌摩擦加工 加工道次 AZ31镁合金 C60颗粒 晶粒细化 
分类号:TG457.1
出版年,卷(期):页码:2019,44(5):162-168
摘要:

 选用轧态AZ31镁合金为基体、C60颗粒为增强相,采用搅拌摩擦加工技术(FSP)制备镁合金表面复合材料,搅拌针头旋转速度为600 r·min-1,加工速度为118 mm·min-1,分别进行1~3道次FSP加工后,通过金相、透射、硬度和拉伸等测试,对搅拌加工区复合显微组织和力学性能进行表征分析。研究表明:FSP可使镁合金晶粒显著细化;C60加入后,在1~3道次FSP内,随着加工道次升高,C60分散程度上升,复合材料平均晶粒尺寸降低,材料硬度上升,抗拉强度上升,但弥散于晶间的团聚颗粒使其拉伸性能低于母材;添加C60后的试样中,2道次硬度有明显上升,最高硬度可达母材的1.73倍,3道次试样硬度平均值最高。结果表明,可通过FSP制备镁基表面复合层强化材料。

 Magnesium alloy surface composite was prepared by friction stir processing (FSP) with rolled AZ31 magnesium alloy as the matrix and C60 particles as the reinforcing phase. After 1-3 passes of FSP with rotation speed of 600 r·min-1 and traverse speed of 118 mm·min-1, respectively, the microstructure and mechanical properties of stir zone were characterized and analyzed by metallographic test, TEM test, microhardness test and tensile test. The results show that FSP can produce significant grain refinement. After C60 is added, with the increasing of pass number for 1 to 3 passes, the disperision degree of C60 increases, the average grain size of composites decreases, and the hardness and tensile strength increase. However, the agglomerated particles dispersed between grains make the tensile properties lower than that of the base metal. In the sample after adding C60, the hardness after two passes increases significantly, the highest hardness reaches 1.73 times of the base metal, and the average hardness after three passes is the highest. The results show that the magnesiumbased surface composite layer strengthening material can be prepared by FSP.

基金项目:
陕西省教育厅科学研究项目(18JK0409)
作者简介:
作者简介:李天麒(1992-),男,硕士,助教 Email:litianqi@xaau.edu.cn
参考文献:

 
[1]陈振华. 镁合金
[M]. 北京:化学工业出版社, 2004.


Chen Z H. Magnesium Alloy
[M]. Beijing:Chemical Industry Press, 2004.〖ZK)〗


[2]周亚军,刘建秀. 镁基复合材料的制备技术研究进展
[J]. 热加工工艺, 2011, 40(20):79-82.

Zhou Y J, Liu J X. Research progress of fabrication methods for magnesium matrix composite
[J]. Hot Working Technology, 2011, 40(20):79-82.[ZK)]


[3]Wang X H, Wang K S. Microstructure and properties of friction stir buttwelded AZ31 magnesium alloy
[J]. Materials Science & Engineering A, 2006, 431(1):114-117.[ZK)]


[4]王开东,常丽丽,王轶农,等. 搅拌摩擦加工技术制备Ti颗粒增强AZ31镁基复合材料
[J]. 中国有色金属学报,2009,19(3):418-425.

Wang K D, Chang L L, Wang Y N, et al. Preparation of MgAZ31 based composites with Ti particles by friction stir processing
[J]. The Chinese Journal of Nonferrous Metals,2009, 19(3):418-423.[ZK)]


[5] Günther R. Grain refinement of AZ31 by (SiC[DK])P: Theoretical calculation and experiment
[J]. Acta Materialia,2006, 54(20): 5591-5597.[ZK)]


[6]Taiki Morishige. Effect of Mg content on the minimum grain size of AlMg alloys obtained by friction stir processing
[J]. Scripta Materialia,2011, 64(4): 355-358.[ZK)]


[7]Thomas W M. Friction stir welding for the transportation industries
[J]. Materials & Design,1997, 18(4-6):269-273.[ZK)]


[8]Morisada Y. Fullerene/A5083 composites fabricated by material flow during friction stir processing
[J]. Composites: Part A, 2007,38:2097-2101.[ZK)]


[9]Mehdi Zohoor. Effect of processing parameters on fabrication of AlMg/Cu composites via friction stir processing
[J]. Materials and Design, 2012, 39(5):358-365.[ZK)]


[10]Nascimento F. Microstructural modification and ductility enhancement of surfaces modified by FSP in aluminum alloys
[J]. Mater Sci.Eng.: A, 2009, 506(1-2):16-22.[ZK)]


[11]袁秋红. 纳米碳材料增强AZ91镁基复合材料制备与性能研究
[D]. 南昌:南昌大学, 2016.

Yuan Q H. Preparation and Mechanical Properties of AZ91 Alloy Composite Reinforced with NanoCarbon Materials
[D]. Nanchang: Nanchang University,2016.[ZK)]


[12]陈小伟. 粉末冶金法制备SiCw/AZ91复合材料研究
[D]. 郑州:郑州大学, 2013.

Chen X W. Research on SiCw/AZ91 Composites with Powder Metallurgical Method
[D]. Zhengzhou:Zhengzhou University, 2013.[ZK)]


[13]Khayyamin D,Mostafapour A,Keshmiri  R. The effect of process parameters on microstructural characteristics of AZ91/SiO2 composite fabricated by FSP
[J]. Materials Science & Engineering A,2013, 559(5):217-221.[ZK)]


[14]Lee C J. Mg based nanocomposites fabricated by friction stir processing
[J]. Scripta Materialia, 2006, 54(7):1415-1420.[ZK)]


[15]沈娟,杨素媛,郭丹, 等. TiNi丝增强AZ31镁合金复合材料的制备及性能
[J]. 稀有金属材料与工程, 2018, 47(10):3218-3222.

Shen J, Yang S J, Guo D, et al. Preparation and properties of TiNi alloy wire reinforced AZ31 magnesium matrix composite
[J]. Rare Metal Materials and Engineering, 2018, 47(10):3218-3222.[ZK)]


[16]李雷, 吴小俊. 镁铝轻质复合板多层挤压复合工艺
[J]. 锻压技术, 2017,42(4):73-78

Li L, Wu X J. Extrusion compound process of Mg /Al composite plate
[J]. Forging & Stamping Technology, 2017,42(4):73-78.[ZK)]


[17]何阳, 袁秋红, 罗岚, 等. 镁基复合材料研究进展及新思路
[J]. 航空材料学报, 2018,38(4):26-36.

He Y, Yuan Q H, Luo L, et al. Current study and novel ideas on magnesium matrix composites
[J]. Journal of Aeronautical Materials, 2018, 38(4):26-36.[ZK)]


[18]吴萍萍,张静静. 镁基复合材料高温变形研究进展
[J]. 材料导报,2018,32(17):3041-3050.

Wu P P, Zhang J J. Advances in hot deformation studies of magnesium matrix composites
[J]. Materials Review, 2018,32(17):3041-3050.[ZK)]


[19]吴思俊,张宇. 挤锻复合成形AZ80镁合金的组织与冲击性能研究
[J]. 锻压技术,2018,43(8):173-177.

Wu S J, Zhang Y. Investigation on microstructure and impact properties of magnesium alloy AZ80 by extrusionforging compound forming
[J]. Forging & Stamping Technology, 2018,43(8):173-177.[ZK)]


[20]Anil Kumar, Santosh Kumar, Mukhopadhyay N K. Introduction to magnesium alloy processing technology and development of lowcost stir casting process for magnesium alloy and its composites
[J]. Journal of Magnesium and Alloys, 2018, 6(3): 245-254.[ZK)]


[21]Narayanasamy P, Selvakumar N,Balasundar P. Effect of weight percentage of TiC on their tribological properties of magnesium composites
[J]. Materials Today: Proceedings, 2018, 5(2):6570-6578.[ZK)]


[22]Ma Z Y, Mishra R S. Development of ultrafinegrained microstructure and low temperature (0.48 Tm) superplasticity in friction stir processed AlMgZr
[J]. Scripta Mater.,2005,53(1):75-80.[ZK)]


[23]Ma Z Y. Preface to the special issue:Friction stir welding and processing
[J]. Journal of Materials Science & Technology,2018,34(1):3-4.[ZK)]


[24]Padhy G K, Wu C S, Gao S. Friction stir based welding and processing technologiesprocesses, parameters, microstructures and applications:A review
[J]. Journal of Materials Science & Technology, 2018, 34(1):1-38.


[25]Popov V A, Chernov B B, Prosviryakov A S, et al.New mechanicalalloyingbased technological scheme for producing electrochemical composite coatings reinforced with nonagglomerated nanodiamond particles
[J]. Journal of Alloys and Compounds, 2014, 615(1):433-436.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9