网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于Workbench的一种增量滚压成形装置
英文标题:An incremental rolling equipment based on Workbench
作者:丁明凯 高绪杰 殷继丽 曹晓琳 郭娜娜 王宗申 朱光明 
单位:山东理工大学 
关键词:增量滚压成形装置 静力学分析 疲劳分析 微沟槽结构 等效应力 变形量 
分类号:TG333
出版年,卷(期):页码:2019,44(7):119-127
摘要:

设计了一套增量滚压成形装置,采用三维软件进行建模、装配及简化,并应用有限元软件ANSYS Workbench对装配体进行有限元分析。通过对增量滚压成形装置在滚压过程中的静力学分析,得到应力、应变和变形云图,结合装置的材料性能对该装置的刚度进行分析,分析了装置中因为受力不同而容易产生破坏的位置;并对咬入过程进行疲劳分析,指出装置中容易产生疲劳破坏的薄弱环节。针对分析的薄弱环节进行优化,提出新的设计方案,并对新装置进行静力学分析和疲劳分析,结果表明,新的设计方案能够有效地降低最大等效应力和变形量,而强度和抗变形能力有很大提高,其寿命和安全因子也明显提高。
 

An incremental rolling equipment was designed, and the modeling, assemble and simplification were conducted by three-dimensional software. Then, the assembly was analyzed by finite element software ANSYS Workbench, and the stress, strain and deformation nephograms were obtained by the static analysis of incremental rolling equipment in the rolling process. Furthermore, the stiffness of equipment was analyzed combining with its material properties, and the locations which are prone to damage in the equipment due to different forces were analyzed. At the same time, the fatigue analysis was performed during the biting process, and the weak locations produced by fatigue damage easily in the equipment were pointed out. Finally, the weakness of equipment was optimized, a new design scheme was proposed, and the static analysis and fatigue analysis of the new equipment were carried out. The results show that the new design scheme can effectively reduce the maximum equivalent stress and deformation amount, and the strength and anti-deformation ability are improved greatly. Thus, the life and safety factor are also improved significantly.

基金项目:
国家自然科学基金资助项目(51605266);山东省自然科学基金资助项目(ZR2017EMM036,ZR2017BEM003)
作者简介:
丁明凯 (1993-),男,硕士研究生,E-mail:18369904508@163.com;通讯作者:朱光明(1976-),男,博士,教授,E-mail:zgm@sdut.edu.cn
参考文献:

[1]Bacher E V, Smith C R. A combined visualization-anemometry study of the turbulent drag reducing mechanisms of triangular micro-groove surface modifications[J]. American Institute of Aeronautics and Astronautics, 1985, 3: 1-10.


[2]Blackwelder, Ron F, Gad-el-Hak, et al. Method and apparatus for reducing turbulent skin friction[P]. United States4932612, 1990-06-12.


[3]Saravi S S, Cheng K. A review of drag reduction by riblets and micro-textures in the turbulent boundary layers[J]. European Scientific Journal, 2013, 9(33): 62-81.


[4]Fu Y F, Yuan C Q, Bai X Q. Marine drag reduction of shark skin inspired riblet surfaces[J]. Biosurface and Biotribology, 2017, 3(1): 11-24.


[5]Viswanath P. Aircraft viscous drag reduction using riblets[J]. Progress in Aerospace Sciences, 2002, 38(6): 571-600.


[6]韩鑫,张德远,李翔,.大面积鲨鱼皮复制制备仿生减阻表面研究[J].科学通报,2008, 53(7):838-842.


Han X, Zhang D Y, Li X, et al. Study on preparation of bionic drag reduction surface by large area sharkskin replication[J]. Chinese Science Bulletin,2008, 53(7):838-842.


[7]Luo Y, Zhang D. Experimental research on biomimetic drag-reducing surface application in natural gas pipelines[J]. Oil Gas-European Magazine, 2012, 38 (4): 213-214.


[8]Bechert D W, Bruse M, Hage W, et al. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry[J]. Journal of Fluid Mechanics, 1997, 338: 59-87.


[9]Brinksmeier E, Mutlugünes Y, Klocke F, et al. Ultra-precision grinding [J]. CIRP Annals-Manufacturing Technology, 2010, 59(2): 652-671.


[10]Yan J, Kaneko T, Uchida K, et al. Fabricating microgrooves with varied cross-sections by electrodischarge machining[J]. International Journal of Advanced Manufacturing Technology, 2010, 50(9-12): 991-1002.


[11]Gao Z Y, Peng L F, Yi P Y, et al. Grain and geometry size effects on plastic deformation in roll-to-plate micro/meso-imprinting process[J]. Journal of Materials Processing Technology, 2015, 219: 28-41.


[12]高照阳, 彭林法, 易培云,. 微细辊对平板辊压成形工艺建模与尺度效应分析[J]. 机械工程学报, 2013, 49(6): 179-186.


Gao Z Y, Peng L F, Yi P Y, et al. Modeling and size effect analysis of micro/meso roll-to-plate imprinting process[J]. Journal of Mechanical Engineering, 2013, 49(6): 179-186.


[13]Hirt G, Thome M. Large area rolling of functional metallic micro structures[J]. Production Engineering, 2007, 1(4): 351-356.


[14]Klocke F, Feldhaus B, Mader S.Development of an incremental rolling process for the production of defined riblet surface structures[J]. Production Engineering, 2007, 1(3): 233-237.


[15]田世权,杜诗文,李永堂, .基于ANSYS Workbench的冷敲机花键轴模态分析[J].锻压技术,2017,42(11):


109-114.


Tian S Q, Du S W, Li Y T, et al. Modal analysis on spline shaft of cold-striking machine based on ANSYS Workbench[J]. Forging & Stamping Technology, 2017, 42(11): 109-114.


[16]赵志业.金属塑性变形与轧制理论[M]. 北京:冶金工业出版社,1994.


Zhao Z Y. Theory of Plastic Deformation and Rolling of Metals[M]. Beijing:Metallurgical Industry Press, 1994.


[17]章璐. 铁素体球墨铸铁断裂机理及疲劳性能研究[D]. 成都:西南交通大学, 2014.


Zhang L. Research on Fracture Mechanism and Fatigue Performance of Ferrite Ductile Iron[D]. Chengdu: Southwest Jiaotong University, 2014.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9