网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
变形量对多道次拉拔和减径轧制5056铝棒组织和力学性能的影响
英文标题:Influences of deformation amount on microstructure and mechanical properties of 5056 aluminum bar in multi-pass drawing and reduced diameter rolling
作者:张晓晖 谭驰高 
单位:包头轻工职业技术学院 中国汽车工业工程有限公司 
关键词:5056铝棒 多道次拉拔 减径轧制 变形量 力学性能 
分类号:TQ133
出版年,卷(期):页码:2019,44(7):170-173
摘要:

对5056铝棒进行了多道次拉拔和减径轧制变形处理,分析了其显微组织结构和力学强度的变化情况。研究结果表明:随着拉拔应变增大至2.0,晶粒被拉长,晶粒发生了显著的细化。当铝棒受到大压下量轧制后,基体中形成了许多平行于轧制态结构的位错胞,生成了部分和轧制方向保持一定角度的片层晶粒位错亚结构。纯铝材料的强度随拉拔与轧制程度的上升而增大,同时伸长率发生了降低的现象;增大等效应变量后,晶粒的尺寸将会发生不断细化,由此实现强度增大的效果;受拉拔与轧制时引起的晶粒择优取向影响,强度也会随之上升。

The deformation treatments of multi-pass drawing and reduced diameter rolling for 5056 aluminum bar were conducted, and the changes of microstructure and mechanical strength of 5056 aluminum bar were analyzed. The results show that the grains are elongated, and the grains are significantly refined as the drawing strain increasing to 2.0. When the 5056 aluminum bar is rolled under high deformation amount, a number of dislocation cells parallel to the rolled structure are formed in the matrix, and a layered grain dislocation substructure with a certain angle to the rolling direction is generated partly. However, the strength of pure aluminum increases with the increasing of drawing and rolling degrees, and the elongation decreases. After increasing the equivalent strain, the grain size is further refined to achieve the effect of strength increase. Thus, the strength is increased due to the influence of preferred orientation of grain during drawing and rolling.

基金项目:
内蒙古自治区教科研规划课题(NZJGH2018072)
作者简介:
张晓晖(1973- ),女,硕士,副教授,E-mail:lidecao903208@126.com
参考文献:

[1]张广平, 李孟林, 吴细毛, . 尺度对金属材料电阻率影响的研究进展 [J]. 材料研究学报, 2014, 28(2): 81-87.


Zhang G P, Li M L, Wu X M, et al. Research progress on effect of length scale on electrical resistivity of metals [J]. Chinese Journal of Materials Research, 2014, 28(2): 81-87.


[2]许晓静,杨帆,赵建吉, . 升温速率与固溶时间对超高强铝合金挤压材组织性能的影响[J].稀有金属, 2018 ,42(3): 238-245.


Xu X J, Yang F, Zhao J J, et al. Microstructure and mechanical properties of ultrahigh strength aluminum alloy extrusion materials with different heating rates and solid solution time[J]. Chinese Journal of Rare Metals, 2018,42(3): 238-245.


[3]Hanazaki K, Shigeiri N, Tsuji N. Change in microstructures and mechanical properties during deep wire drawing of copper [J]. Materials Science and Engineering: A, 2010, 527(21-22): 5699-5707.


[4]龚乾江,杨明,梁益龙,等. 211Z-X新型高强韧铝合金热成形及动态再结晶行为研究[J].稀有金属,2018 ,42(1):36-44.


Gong Q J, Yang M, Liang Y L, et al. Hot formability and dynamic recrystallization behavior of new high performance aluminum alloy 211Z-X[J]. Chinese Journal of Rare Metals, 2018 ,42(1):36-44.


[5]Li S, Gazder A A, Beyerlein I J, et al. Microstructure and texture evolution during equal channel angular extrusion of interstitial-free steel: Effects of die angle and processing route [J]. Acta Mater, 2007, 55(3): 1017-1032.


[6]Liu X C, Zhang H W, Lu K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel [J]. Science, 2013, 342(6156): 337-340.


[7]王强, 吴细毛, 李春和, . 拉拔工艺对A6工业纯铝棒力学性能的影响 [J]. 材料研究学报, 2013,27(3):231-236.


Wang Q, Wu X M, Li C H, et al. Mechanical properties of A6 aluminum conductor in drawing process [J]. Chinese Journal of Materials Research, 2013,27(3):231-236.


[8]何毅,杨湘杰,朱永博,等. Al-Ce中间合金的微观组织和细化机制的研究[J].稀有金属,2018 ,42(4):350-355.


He Y, Yang X J, Zhu Y B, et al. Microstructure and refining mechanism of Al-Ce master alloy[J]. Chinese Journal of Rare Metals, 2018 ,42(4):350-355.


[9]Habibi A, Ketabchi M, Eskandarzadeh M. Nano-grained pure copper with high-strength and high-conductivity produced by equal channel angular rolling process [J]. Journal of Materials Processing Technology, 2011, 211(6): 1085-1090.


[10]Raygan S, Mofrad H E, Pourabdoli M, et al. Effect of rolling and annealing processes on the hardness and electrical conductivityvalues of Cu-13.5%Mn-4%Ni alloy [J]. Journal of Materials Processing Technology, 2011, 211(11): 1810-1816.


[11]Murashkin M Y, Sabirov I, Sauvage X, et al. Nanostructured Al and Cu alloys with superior strength and electrical conductivity [J]. Journal of Materials Science, 2016, 51(1): 33-49.


[12]César M, Liu D, Gall D, et al. Calculated resistances of single grain boundaries in copper [J]. Physical Review Applied, 2014, 2(4): 1-11.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9