网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
30CrMoA薄壁筒形件成形及微观组织变化
英文标题:Forming and microstructure evolution of 30CrMoA thin wall cylinders
作者:徐蒙蒙 李洪波 郭猛 白英博 
单位:燕山大学 
关键词:30CrMoA 薄壁筒形件 挤压成形 微观组织演变 Deform-3D 
分类号:TG376
出版年,卷(期):页码:2019,44(8):71-79
摘要:

 基于在Gleeble-3800上的热压缩实验,计算30CrMoA钢的本构方程,并建立了其动态再结晶模型。采用有限元分析软件对30CrMoA薄壁筒形件挤压和变薄拉深成形进行优化,并做了实验对比。得出结果:在条件为1100 ℃和150 mm·s-1的挤压速度时,可得到最小的挤压晶粒尺寸;在温度为970 ℃和挤压速度为50 mm·s-1时,可得到最优变薄拉深件晶粒尺寸;实验和数值模拟结果基本相符,验证了对于30CrMoA钢微观组织的演变可以利用所建立的本构方程及动态再结晶模型进行预测。为进一步研究30CrMoA钢在热变形下的零件的成形和组织演变规律提供了依据。

 

 The thermal compression experiment was conducted by Gleeble-3800, the constitutive equation was calculated and the dynamic recrystallization model of 30CrMoA was established. The extruding and thinning drawing of 30CrMoA thin wall cylinders were optimized by the finite element analysis software, and the comparison of simulation and experiment was carried out. The results show that the smallest grain size of extrusion can be obtained when the deformation temperature is 1100 ℃ and the extrusion speed is 150 mm·s-1, and the optimum grain size of thining drawing parts is obtained when the deformation temperature is 970 ℃ and the extrusion speed is 50 mm·s-1. The consistency of simulation and experiment results indicate that the microstructure evolution of 30CrMoA can be predicted by the above constitutive equation and dynamic recrystallization model, which provides a basis for further research on the forming and microstructure evolution of 30CrMoA parts under thermal deformation. 

基金项目:
作者简介:
作者简介:徐蒙蒙(1995-),男,硕士 E-mail:2515649222@qq.com 通讯作者:李洪波(1963-),男,博士,教授 E-mail:lhb@ysu.edu.cn
参考文献:

 [1]   原凌云. 气瓶钢30CrMoA轧坯低倍裂纹分析[J]. 山西冶金, 2016(5): 40-44.


Yuan L Y. Analysis of low multiple cracks in gas cylinder steel 30CrMoA rolling stock[J]. Shanxi Metallurgy 2016(5): 40-44.


[2]   郝海滨.CNG气瓶拉拔工艺研究[D].秦皇岛: 燕山大学, 2014.


Hao H B. Research on Drawing Process of CNG Gas Cylinder[D]. Qinhuangdao: Yanshan University, 2014.


[3]   王晓良. 基于微观组织预测的TC4叶片精锻过程数值模拟[D]. 沈阳: 沈阳理工大学, 2015.


Wang X L. Simulation of Precise Forging of TC4 Blades Based on the Microstructure Prediction[D]. Shenyang:Shenyang Ligong University, 2015.


[4]   王小红, 汪姝, 林元华,. 铝合金钻杆管体动态再结晶的不均匀分布研究[J]. 塑性工程学报,2017,24(6):177-184.


Wang X HWang SLin Y Het al. Dynamic recrystallization inhomogeneous distribution in aluminum alloy drill pipe[J]. Journal of Plasticity Engineering,2017,24(6):177-184.


[5]   李梦飞, 张立文, 张驰,. 38MnVS6非调质钢大尺寸棒材往复热轧过程微观组织演化数值模拟[J]. 塑性工程学报,2016,23(6):112-118.


Li M FZhang L WZhang Cet al. Numerical simulation of microstructure evolution during hot reversible rolling process of largesize 38MnVS6 nonquenched and tempered steel rod[J]. Journal of Plasticity Engineering2016,23(6):112-118.


 


[6]   殷凯, 金朝阳, 俞栋华. 镁合金双道次热压缩微观组织有限元模拟[J]. 农业装备技术, 2017, 43(4):32-35.


Yin KJin C YYu D H. Finite element simulation of microstructure of magnesium alloy under doublepass hot compression [J]. Agricultural Equipment & Technology2017, 43(4):32-35.


[7]   顾勇飞.非圆内孔接头塑性成形工艺研究[D].秦皇岛: 燕山大学,2008.


Gu Y F. Precision Forming and Numerical Simulation of Noncircular Hole Joint[D].Qinhuangdao:Yanshan University, 2008.


[8]   李林鑫,银强,陈显均. 基于DEFORM3D的半轴齿轮锻造工艺优化设计与仿真分析[J]. 锻压技术,2018,43(3):26-30.


Li L XYin QChen X J. Optimization design and simulation analysis on forging process of semiaxle gear based on DEFORM3D [J]. Forging & Stamping Technology2018,43(3):26-30.


[9]   张学奇,董万鹏,苏钰,等. 基于Deform3D的花键轴叉热锻成形工艺优化[J]. 锻压技术,2017421):5-9.


Zhang X QDong W PSu Yet al. Process optimization on hot forging for spline shaft fork based on Deform3D[J]. Forging & Stamping Technology2017421):5-9.


[10]肖艳红,郭成. 30Cr钢高温变形流变应力模型[J].锻压技术,2018,43(1):176-180.


Xiao Y HGuo C. Flow stress model for steel 30Cr during hot deformation [J].Forging & Stamping Technology2018,43(1):176-180.


[11]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1):22-32


[12]Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling[J]. Metal Science, 1979, 13(3-4):187-194.


[13]Shen G, Semiatin S L, Shivpuri R. Modeling microstructural development during the forging of Waspaloy[J]. Metallurgical and Materials Transactions A, 1995, 26(7):1795-1803.


[14]Poliak E I, Jonas J. Initiation of dynamic recrystallization in constant strain rate hot deformation[J]. ISIJ International, 2003, 43(5): 684-691.


[15]Mirzadeh H, Najafizadeh A. Prediction of the critical conditions for initiation of dynamic recrystallization[J]. Materials & Design, 2010, 31(3):1174-1179.


[16]Mirzadeh H, Najafizadeh A. Hot deformation and dynamic recrystallization of 174 PH stainless steel[J]. ISIJ international, 2013, 53(4): 680-689.


[17]Jonas J J, Quelennec X, Jiang L, et al. The avrami kinetics of dynamic recrystallization[J]. Acta materialia, 2009, 57(9): 2748-2756.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9