网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
预热温度对6005A挤压管材组织的影响
英文标题:Influence of preheating temperature on microstructure of 6005A extruded tube
作者:孙磊 黄东男 申浩辰 吴南 纪维玥 
单位:内蒙古工业大学 中铝材料应用研究院有限公司 
关键词:6005A铝合金 分流模 预热温度 挤压焊合 织构 
分类号:TG379
出版年,卷(期):页码:2019,44(8):92-99
摘要:

 为研究预热温度对挤压管材6005A铝合金的组织及性能的影响,6005A铝合金分别在450,480和510 ℃的预热温度条件下挤压成空心方管,并采用金相显微镜、电子背散射衍射法,对挤压后方管的焊缝处及其周围的组织进行研究。试验结果表明:随着预热温度的增加,方管的平均晶粒尺寸和再结晶晶粒占比逐渐增大,方管焊缝处的R-goss织构和远离焊缝处的A织构的比例先增加后减小。同时,对方管焊缝及焊缝两侧进行硬度测试,结果表明,方管在预热温度为480 ℃挤压时,硬度值最大,方管焊缝处的硬度明显低于远离焊缝处的硬度。

 The influence of preheating temperature on the microstructure and properties of 6005A aluminium alloy extruded tube was studied. Then, the 6005A aluminium alloy was extruded into hollow square tubes at 450, 480 and 510 ℃ preheating temperatures respectively, and the microstructures at the weld seam and surrounding of extruded square tube were studied by metallographic microscope and electron backscatter diffraction. The experimental results show that with the increasing of preheating temperature, the average grain size and recrystallized grain proportion of square tube increase gradually, and the ratio of R-goss texture at the weld seam of square tube and A texture far away from weld seam first increase and then decrease. Meanwhile, the hardness of the weld seam and both sides of the weld seam of square tube were tested. The results show that the hardness of square tube is the largest when it is extruded at 480 ℃, and the hardness at the weld seam of square tube is significantly lower than that far away from the weld seam.

基金项目:
国家自然科学基金资助项目(51364027)
作者简介:
作者简介:孙 磊(1994-),男,硕士研究生 E-mail:1170948076@qq.com 通讯作者:黄东男(1979-),男,博士,教授 E-mail:dongnan_2000@163.com
参考文献:

 [1]   谢建新. 金属挤压技术的发展现状与趋势[J]. 中国材料进展,2013325):257-263.


Xie J X. Current situation and development trends of metals extrusion technology[J]. Materials China, 2013, 32 (5): 257-263.           


[2]   Chen H, Zhao G, Zhang C, et al. Numerical simulation of extrusion process and die structure optimization for a complex aluminum multicavity wallboard of highspeed train[J]. Materials and Manufacturing Processes, 2011, 26(12):1530-1538.


[3]   黄东男, 于洋,李有来,等. 复杂断面空心铝型材分流模挤压焊合过程金属流变行为分析[J].材料工程,2014,(9: 68-75.


Huang D N, Yu Y, Li Y L, et al. Metal flowing behavior during welding process of porthole extrusion for complicate Alalloy profile[J]. Journal of Materials Engineering, 2014, (9): 68-75.


[4]   Fan X H , Tang D , Fang W L , et al. Microstructure development and texture evolution of aluminum multiport extrusion tube during the porthole die extrusion[J]. Materials Characterization, 2016, 118:468-480.


[5]   黄东男, 张志豪,李静媛,等. 焊合室深度及焊合角对方形管分流模挤压成形质量的影响[J]. 中国有色金属学报,2010, 205:954-960.


Huang D N, Zhang Z H, Li J Y, et al. Influences of welding chamber depth and welding angle on forming quality of extrusion of square tube by porthole die[J]. The Chinese Journal of Nonferrous Metals, 2010, 20 (5): 954-960.


[6]   黄东男,李有来,左壮壮,等. 异形管材分流模挤压焊合过程金属流变及模具受力的模拟分析[J].材料科学与工艺,2015,232: 25-32.


Huang D N, Yu Y L, Zuo Z Z, et al. Simulation analysis of metal flowing behaviors and die stress distributions during porthole extrusion of a special pipe[J]. Materials Science and Technology, 2015, 232: 25-32


[7]   赵国群, 陈良, 喻俊荃. 铝合金型材分流模挤压过程焊合行为的研究进展[J]. 锻压技术, 2018, 43(7): 49-55.


Zhao G Q, Chen L, Yu J Q. Research progress of welding behavior in extrusion process of shunt die for aluminium alloy profiles [J]. Forging & Stamping Technology, 2018, 43 (7): 49-55.           


[8]   Fan X , Chen L , Chen G , et al. Joining of 1060/6063 aluminum alloys based on porthole die extrusion process[J]. Journal of Materials Processing Technology, 2017, 250:65-72.


[9]   Zhang Z H , Hou W R , Huang D N , et al. Mesh reconstruction technology of welding process in 3D FEM simulation of porthole extrusion and its application[J]. Procedia Engineering, 2012, 36: 253-260.


[10]Edwards S P , Den Bakker A J , Zhou J , et al. Physical simulation of longitudinal weld seam formation in aluminium extrusions[J]. Materials Science Forum, 2006, 519:1403-1408.


[11]Yu J, Zhao G, Zhang C, et al. Dynamic evolution of grain structure and microtexture along a welding path of aluminum alloy profiles extruded by porthole dies [J]. Materials Science and Engineering: A, 2017, 682:679-690.


[12]Chen G, Chen L, Zhao G, et al. Microstructure evolution during solution treatment of extruded AlZnMg profile containing a longitudinal weld seam [J]. Journal of Alloys and Compounds, 2017, 729:210-221.


[13]Chen L, Tang J, Zhao G, et al. Fabrication of Al/Mg/Al laminate by a porthole die coextrusion process [J]. Journal of Materials Processing Technology, 2018, 258:165-173.


[14]Huang Y C , Liu Y , Li Q , et al. Relevance between microstructure and texture during cold rolling of AA3104 aluminum alloy[J]. Journal of Alloys and Compounds, 2016, 673: 383-389.           


[15]Montheillet F , Cohen M , Jonas J J . Axial stresses and texture development during the torsion testing of Al, Cu and α-Fe[J]. Acta Metallurgica, 1984, 32(11):2077-2089.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9