网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于Arrhenius方程和BP神经网络的2024Al/Al18B4O33w复合材料热变形流变应力预测
英文标题:Prediction on hot deformation flow stress of 2024Al/Al18B4O33w composites based on Arrhenius equation and BP neural network
作者:柏阳 吴玉程 罗志勇 汪伟 
单位:合肥工业大学 航空结构件成形制造与装备安徽省重点实验室 
关键词:2024Al/Al18B4O33w复合材料 Arrhenius方程 BP神经网络 流变应力 热加工图 
分类号:TG311
出版年,卷(期):页码:2019,44(8):168-175
摘要:

 在350~500 ℃和应变速率0.01~10 s-1条件下对2024Al/Al18B4O33w复合材料进行等温压缩实验。分析复合材料流变应力曲线,基于应变补偿型Arrhenius方程和BP神经网络模型分别预测其流变应力,通过数据误差分析评估两种模型的精度。通过BP神经网络预测的流变应力数据,建立基于动态材料模型的热加工图,并结合微观组织验证热加工图的准确性。结果表明:BP神经网络模型较应变补偿型Arrhenius方程更能准确地预测2024Al/Al18B4O33w复合材料的流变应力。热加工图预测复合材料热变形合适的工艺参数区域为440~500 ℃,0.01~0.13 s-1。

 Isothermal compression test of 2024Al/Al18B4O33w composites was conducted at 350-500 ℃ and strain rates of 0.01-10 s-1. The flow stress curves of composites were analyzed. The flow stress were predicted based on strain compensated Arrhenius equation and BP neural network model. The accuracies of two models were evaluated by data error analysis. Based on the data of the flow stress predicted by BP neural network, the hot processing map based on dynamic material model was established. The accuracy of hot processing map was verified by the microstructure. The results show that the prediction on flow stress of 2024Al/Al18B4O33w composites based on BP neural network model is more accurate than that based on Arrhenius equation. The optimal processing region in hot deformation of 2024Al/Al18B4O33w composites based on hot processing map were 440-500 ℃ and 0.01-0.13 s-1. 

基金项目:
航空结构件成形制造与装备安徽省重点实验室开放课题资助(HKJG2018-04)
作者简介:
作者简介:柏 阳(1992-),男,硕士研究生 E-mail:byhfut@163.com 通讯作者:吴玉程(1962-)男,教授 E-mail:ycwu@hfut.edu.cn
参考文献:

 [1]   Rotundo F, Ceschini L, Morri A, et al. Mechanical and microstructural characterization of 2124Al/25 vol.%SiCp joints obtained by linear friction welding (LFW)[J]. Composites Part A Applied Science & Manufacturing, 2010, 41(9):0-1037.


[2]   王爱琴,韩辉辉,谢敬佩. SiCSi混合颗粒增强铝基复合材料的研究现状[J]. 粉末冶金工业,2015, 25(6):66-71.


Wang A Q, Han H H, Xie J P. Research status on SiC and Si hybrid particle reinforced Al matrix composites[J]. Powder Metallurgy Industry, 2015, 25(6):66-71.


[3]   苏海,高文理,毛成,等. 搅拌铸造SiCp/2024铝基复合材料的显微组织与力学性能[J]. 中国有色金属学报,2010, 20(2):217-225.


Su H, Gao W L, Mao C, et al. Microstructures and mechanical properties of SiCp/2024 aluminum matrix composite synthesized by stir casting[J].The Chinese Journal of Nonferrous Metals,2010, 20(2):217-225.


[4]   王涛,毛昌辉,杨剑. WCp/2024Al 复合材料的热变形行为[J]. 材料科学与工程学报,201028(4):558-562.


Wang T, Mao C H, Yang J. Hot deformation behavior of WCp/2024Al composite[J]. Journal of Materials Science and Engineering, 201028(4):558-562.


[5]   范永革. AZ31镁合金的中温流变失稳特征[J]. 中国有色金属学报,2005, 15(10):1602-1606.


Fan Y G. Instability flow characteristics of AZ31 magnesium alloy at medium temperature[J].The Chinese Journal of Nonferrous Metals, 2005, 15(10):1602-1606.


[6]   魏少华,聂俊辉,刘彦强,等. 15%SiCp/2009A1复合材料的热变形行为及加工图[J]. 稀有金属,2016, 40(8):770-775.


Wei S H, Nie J H, Liu Y Q, et al. Hot deformation behavior and processing map of 15%SiCp/2009A1 composites[J]. Chinese Journal of Rare Metals, 2016, 40(8):770-775.


[7]   Yang C, Zong Y, Zheng Z, et al. Experimental and theoretical investigation on the compressive behavior of aluminum borate whisker reinforced 2024Al composites[J]. Materials Characterization, 2014, 96:84-92.


[8]   李爱滨,耿林,翟瑾番. 晶须取向对SiCw/6061Al复合材料热压缩变形行为的影响[J]. 材料工程,2003, (4):14-16.


Li A B, Geng L, Zhai J F. Effects of whisker orientation on hot compressive deformation behavior of SiCw/Al composites[J]. Journal of Materials Engineering, 2003, (4):14-16.


[9]   全雪峰,常梦星. 晶须增强铝基复合材料的热压缩变形行为研究[J]. 铸造技术, 2014, (2):481-483.


Quan X F, Chang M X. Deformation behavior of aluminum matrix composite enhanced by whisker in thermal compression process [J]. Foundry Technology, 2014, (2):481-483.


[10]李建辉,李春峰,邓将华. 基于速度场的SiCw/6061正挤压变形晶须转动有限元分析[J]. 塑性工程学报, 2007, 14(3):104-107.


Li J H, Li C F, Deng J H. Finite element analysis of whisker rotation of SiCw/6061 composite under extrusion deformation with velocity field [J]. Journal of Plasticity Engineering, 2007, 14(3):104-107.


[11]左龙,汤杰,张辉. Zn含量对AlZnMgCu合金热变形流变应力行为的影响[J].锻压技术,2018,43(5):120-125.


Zuo LTang JZhang H. Influence of Zn content on flow stress behavior in the hot deformation for AlZnMgCu alloys [J].Forging & Stamping Technology2018,43(5):120-125.


[12]王小娜,张辉. 5005铝合金热压缩变形行为[J]. 锻压技术, 2017, 42(2):119-123.


Wang X NZhang H. Hot compression behavior of aluminum alloy 5005 [J]. Forging & Stamping Technology2017422):119-123.


[13]Medina S F, Hernandez C A. General expression of the ZenerHollomon parameter as a function of the chemical composition of low alloy and microalloyed steels[J]. Acta Materialia, 1996, 44(1):137-148.


[14]Chen L, Zhao G, Gong J, et al. Hot deformation behaviors and processing maps of 2024 aluminum alloy in ascast and homogenized states[J]. Journal of Materials Engineering and Performance, 2015, 24(12): 5002-5012.


[15]岳洋,朱景川,刘勇,等. 基于BP神经网络的TA15钛合金热变形工艺-性能预报[J]. 稀有金属材料与工程, 2009, 38(10):1811-1814.


Yue Y, Zhu J C, Liu Y, et al. Prediction of processingproperties of TA15 titanium alloy based on BP neural betwork [J]. Rare Metal Materials and Engineering2009, 38(10):1811-1814.


[16]吴颖,张志森,曾强. 基于神经网络和热加工图的TA15钛合金热变形行为研究[J]. 热加工工艺, 2015(21):156-158.


Wu Y, Zhang Z S, Zeng Q. Research on hot deformation behavior of TA15 titanium alloy based on neural network and processing map[J]. Hot Working Technology, 2015(21):156-158.


[17]刘大博,杨守杰,王克鲁,等. 2D70铝合金热变形行为及加工图[J]. 中国有色金属学报, 2013,23(8):2077-2082.


Liu D B, Yang S L, Wang K L, et al. Hot deformation behavior and processing map of aluminum alloy 2D70[J]. The Chinese Journal of Nonferrous Metals, 2013,23(8):2077-2082.


[18]Prasad Y, Rao K P, Sasidhara S. Hot Working Guide: A Compendium of Processing Maps[M], Ohio: ASM International, 2015.


[19]Prasad Y, Seshacharyulu T. Modelling of hot deformation for microstructural control[J]. International Materials Reviews, 1998, 43(6): 243-258.


[20]肖罡,李落星,刘志文,等. 6013铝合金的热变形行为及热加工图[J]. 材料热处理学报, 2014, 35(10):23-28.


Xiao G, Li L X, Liu Z W, et al. Hot deformation behavior and processing maps of 6013 aluminum alloy[J]. Journal of Material Heat Treatment. 2014, 35(10):23-28.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9