[1]Ryabov V V, Motovilina G D, Khlusova E I, et al. Study of the structure of new wear-resistant steels for agricultural machinery components after operational tests [J]. Metallurgist, 2016, 60 (7):839-844.
[2]朱冬梅, 张少军, 李超, 等. 基于温度-组织-应力三场耦合的耐磨钢淬火工艺 [J]. 材料热处理学报, 2015, 36(3):232-237.
Zhu D M, Zhang S J, Li C, et al. Quenching process of wear resistant steel TNM360 with temperature-microstructure-stress coupling [J]. Transactions of Materials and Heat Treatment, 2015, 36(3):232-237.
[3]曹艺, 王昭东, 吴迪, 等. NM400高强度低合金耐磨钢的组织与性能 [J]. 东北大学学报:自然科学版, 2011, 32(2):241-244.
Cao Y, Wang Z D, Wu D, et al. Microstructure and mechanical properties of HSLA wear resistant steel NM400 [J]. Journal of Northeastern University:Natural Science, 2011, 32(2):241-244.
[4]Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe-C alloys [J]. Acta Materialia, 2003, 51(6):1789-1799.
[5]Huang L, Deng X T, Jia Y, et al. Effects of using (Ti,Mo)C particles to reduce the three-body abrasive wear of a low alloy steel [J]. Wear, 2018, 410(5): 119-126.
[6]Song H Y, Zhang S H, Lan L Y, et al. Effect of direct quenching on microstructure and mechanical properties of a wear-resistant steel [J]. Acta Metallurgical Sonica, 2013, 26 (4):390-398.
[7]宁勤恒, 董俊媛, 李永刚, 等. 大规格NM450 钢板喷水淬火有限元模拟 [J]. 金属热处理, 2018, 43(10): 221-226.
Ning Q H, Dong J Y, Li Y G, et al. Finite element simulation of water jet quenching for large NM450 steel plate [J]. Heat Treatment of Metals, 2018, 43(10): 221-226.
[8]Fu T L, Deng X T, Liu G H, et al. Experimental study of cooling speed for ultra-thick steel plate during the jet impinging and quenching process [J]. International Journal of Precision Engineering and Manufacturing, 2016, 17(11):1503-1514.
[9]袁望姣, 吴运新. 基于ANSYS 的铝合金厚板淬火过程热力耦合数值分析 [J]. 中南大学学报, 2010, 41(6): 2207-2212.
Yuan W J, Wu Y X. Coupled thermal-mechanical simulation on quenching of aluminum alloy thick-plate based on ANSYS [J]. Journal of Central South University, 2010, 41(6): 2207-2212.
[10]王东城, 吴燕林, 刘宏民. 带钢横断面形状特征参数识别方法 [J]. 钢铁, 2015, 50(10): 37- 44.
Wang D C, Wu Y L, Liu H M. Characteristic parameters recognition method of strip cross-sectional shape [J]. Iron & Steel, 2015, 50(10): 37- 44.
[11]Wada T, Oshimi M, Ueda M. Temperature drop of steel by hydraulic descaling for a hot strip rolling mill [J]. Tetsu-to-Hagane, 1991,77(9):1458-1464.
[12]Sellars C M. Computer modeling of hot working prcesses [J]. Materials Science and Technology,1985, 1(4):325-332.
[13]Ginzburg V B. High-Quality Steel Rolling:Theory and Practice [M].New York:CRC Press, 1993.
[14]张志敏, 余伟, 蔡庆伍. 中厚板辊式淬火换热系数的确定方法 [J]. 材料热处理学报, 2013, 34(3):170-175.
Zhang Z M, Yu W, Cai Q W. Method for determination of heat transfer coefficient of plate during roller quenching [J]. Transactions of Materials and Heat Treatment, 2013, 34(3):170-175.
[15]袁国, 韩毅, 王超, 等. 中厚板辊式淬火机淬火过程的冷却机理 [J]. 材料热处理学报, 2010, 31(12):148-152.
Yuan G, Han Y, Wang C, et al. Cooling mechanism during quenching by plate roller quenching machine [J]. Transactions of Materials and Heat Treatment, 2010, 31(12):148-152.
[16]Fu T L, Wang Z D, Li Y, et al. Establishment and application of UFC-ACC heat transfer coefficient model [J]. Journal of Harbin Institute of Technology, 2014, 21(2):57-62.
[17]高朋, 刘宏民, 于丙强, 等. 中厚板高压水除鳞对流换热系数的研究 [J]. 燕山大学学报,2014, 38(3):211-215.
Gao P, Liu H M, Yu B Q, et al. Study of convective heat transfer coefficient for medium and heavy plate high pressure water descaling [J]. Journal of Yanshan University,2014, 38(3):211-215.
[18]高朋, 卓越, 韩冰. 低合金连铸坯粗轧前高压水除鳞换热系数的研究 [J]. 塑性工程学报, 2018, 25(1):252-257.
Gao P, Zhuo Y, Han B. Study of convective heat transfer coefficient for high pressure water descaling of low alloy continuous casting billet before rough rolling [J]. Journal of Plasticity Engineering, 2018, 25(1):252-257.
|