网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
NM450级低合金高强度耐磨钢淬火残余应力分析
英文标题:Quenching residual stress analysis on NM450 low alloy and high strength wear-resistant steel
作者:高朋 王东城 卓越 孙国栋 张文娟 
单位:1.九江学院 机械与材料工程学院 2.燕山大学 国家冷轧板带装备及工艺工程技术研究中心 3.燕山大学 亚稳材料制备技术与科学国家重点实验室 4.九江学院 图书馆 
关键词:耐磨钢 淬火 残余应力 板形 换热系数 
分类号:TG335.11
出版年,卷(期):页码:2019,44(10):157-162
摘要:

针对国内某厚板厂NM450级高强度耐磨钢板形存在的问题,计算对应工况的耐磨钢淬火换热系数,建立淬火过程温度-组织-应力耦合数学模型。采用有限差分法计算钢板残余应力,研究残余应力和板形之间的关系,为该厂制定合理的淬火工艺。采用改进措施后,在保证淬火设备正常运行的情况下,调整钢板上、下冷却水量的比例为1∶1.5,淬火冷却后耐磨钢板温度均匀性得到了改善,残余应力也得到了控制。生产钢板厚度在20 mm以下的薄规格离线淬火钢板的板形稳定达到5 mm/1000 mm以下,降低了后序钢板矫直的工作量,为生产符合板形要求的NM450级高强度耐磨钢提供了理论指导。

 

For the problems existing in the plate shape of NM450  high strength wear-resistant steel in a domestic heavy plate plant, the quenching heat transfer coefficient of wear-resistant steel under corresponding working conditions was calculated, and the temperature-structure-stress coupling mathematical model of quenching process was established. Then, the residual stress of steel plate was calculated by finite difference method, and the relationship between residual stress and plate  shape was studied to provide reasonable quenching process for the plant. With the improvement measures, under the condition of ensuring the normal operation of quenching equipment, the ratio of cooling water between upper and lower steel plates was adjusted to 1∶1.5, the temperature uniformity of wear-resistant steel plates was improved after quenching and cooling, and the residual stress was also controlled. Thus, the plate shape stability of thin off-line quenched steel plate with thickness less than 20 mm was less than 5 mm/1000 mm, and the sequential straightening workload of steel plate was reduced to provide theoretical guidance for the production of NM450 high strength wear-resistant steel which met the plate shape requirements.

基金项目:
国家自然科学基金地方基金资助项目(51565040)
作者简介:
作者简介:高朋(1978-),男,博士,高级工程师 E-mail:15781807@qq.com
参考文献:


[1]Ryabov V V, Motovilina G D, Khlusova E I, et al. Study of the structure of new wear-resistant steels for agricultural machinery components after operational tests
[J]. Metallurgist, 2016, 60 (7):839-844.


 


[2]朱冬梅, 张少军, 李超, 等. 基于温度-组织-应力三场耦合的耐磨钢淬火工艺
[J]. 材料热处理学报, 2015, 36(3):232-237.

 

Zhu D M, Zhang S J, Li C, et al. Quenching process of wear resistant steel TNM360 with temperature-microstructure-stress coupling
[J]. Transactions of Materials and Heat Treatment, 2015, 36(3):232-237.

 


[3]曹艺, 王昭东, 吴迪, 等. NM400高强度低合金耐磨钢的组织与性能
[J]. 东北大学学报:自然科学版, 2011, 32(2):241-244.

 

Cao Y, Wang Z D, Wu D, et al. Microstructure and mechanical properties of HSLA wear resistant steel NM400
[J]. Journal of Northeastern University:Natural Science, 2011, 32(2):241-244.

 


[4]Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe-C alloys
[J]. Acta Materialia, 2003, 51(6):1789-1799.

 


[5]Huang L, Deng X T, Jia Y, et al. Effects of using (Ti,Mo)C particles to reduce the three-body abrasive wear of a low alloy steel
[J]. Wear, 2018, 410(5): 119-126.

 


[6]Song H Y, Zhang S H, Lan L Y, et al. Effect of direct quenching on microstructure and mechanical properties of a wear-resistant steel
[J]. Acta Metallurgical Sonica, 2013, 26 (4):390-398.

 


[7]宁勤恒, 董俊媛, 李永刚, 等. 大规格NM450 钢板喷水淬火有限元模拟
[J]. 金属热处理, 2018, 43(10): 221-226.

 

Ning Q H, Dong J Y, Li Y G, et al. Finite element simulation of water jet quenching for large NM450 steel plate
[J]. Heat Treatment of Metals, 2018, 43(10): 221-226.

 


[8]Fu T L, Deng X T, Liu G H, et al. Experimental study of cooling speed for ultra-thick steel plate during the jet impinging and quenching process
[J]. International Journal of Precision Engineering and Manufacturing, 2016, 17(11):1503-1514.

 


[9]袁望姣, 吴运新. 基于ANSYS 的铝合金厚板淬火过程热力耦合数值分析
[J]. 中南大学学报, 2010, 41(6): 2207-2212.

 

Yuan W J, Wu Y X. Coupled thermal-mechanical simulation on quenching of aluminum alloy thick-plate based on ANSYS
[J]. Journal of Central South University, 2010, 41(6): 2207-2212.

 


[10]王东城, 吴燕林, 刘宏民. 带钢横断面形状特征参数识别方法
[J]. 钢铁, 2015, 50(10): 37- 44.

 

Wang D C, Wu Y L, Liu H M. Characteristic parameters recognition method of strip cross-sectional shape
[J]. Iron & Steel, 2015, 50(10): 37- 44.

 


[11]Wada T, Oshimi M, Ueda M. Temperature drop of steel by hydraulic descaling for a hot strip rolling mill
[J]. Tetsu-to-Hagane, 1991,77(9):1458-1464.

 


[12]Sellars C M. Computer modeling of hot working prcesses
[J]. Materials Science and Technology,1985, 1(4):325-332.

 


[13]Ginzburg V B. High-Quality Steel Rolling:Theory and Practice
[M].New York:CRC Press, 1993.

 


[14]张志敏, 余伟, 蔡庆伍. 中厚板辊式淬火换热系数的确定方法
[J]. 材料热处理学报, 2013, 34(3):170-175.

 

Zhang Z M, Yu W, Cai Q W. Method for determination of heat transfer coefficient of plate during roller quenching
[J]. Transactions of Materials and Heat Treatment, 2013, 34(3):170-175.

 


[15]袁国, 韩毅, 王超, 等. 中厚板辊式淬火机淬火过程的冷却机理
[J]. 材料热处理学报, 2010, 31(12):148-152.

 

Yuan G, Han Y, Wang C, et al. Cooling mechanism during quenching by plate roller quenching machine
[J]. Transactions of Materials and Heat Treatment, 2010, 31(12):148-152.

 


[16]Fu T L, Wang Z D, Li Y, et al. Establishment and application of UFC-ACC heat transfer coefficient model
[J]. Journal of Harbin Institute of Technology, 2014, 21(2):57-62.

 


[17]高朋, 刘宏民, 于丙强, 等. 中厚板高压水除鳞对流换热系数的研究
[J]. 燕山大学学报,2014, 38(3):211-215.

 

Gao P, Liu H M, Yu B Q, et al. Study of convective heat transfer coefficient for medium and heavy plate high pressure water descaling
[J]. Journal of Yanshan University,2014, 38(3):211-215.

 


[18]高朋, 卓越, 韩冰. 低合金连铸坯粗轧前高压水除鳞换热系数的研究
[J]. 塑性工程学报, 2018, 25(1):252-257.

 

Gao P, Zhuo Y, Han B. Study of convective heat transfer coefficient for high pressure water descaling of low alloy continuous casting billet before rough rolling
[J]. Journal of Plasticity Engineering, 2018, 25(1):252-257.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9