网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
灰色预测模型在自由折弯中的应用
英文标题:Application of grey prediction model in free bending
作者:付争伟 陶晶 赵刚 
单位:武汉科技大学 湖北理工学院 
关键词:折弯成形 弯曲回弹 灰色系统 灰色预测技术 折弯角 
分类号:TG316.2
出版年,卷(期):页码:2019,44(9):63-67
摘要:

为解决板件在折弯时由于弯曲回弹造成的折弯精度不足,揭示了折弯成形角与折弯上模下压量的关系,使得通过控制上模下压量能够精确快速地得到折弯成形角,并以Q235钢自由折弯实验数据为基础,建立了自由折弯上模下压量和折弯成形角的灰色预测GM(1,1)模型;并根据实际情况,为了减小预测模型和实际值拟合误差,采用首尾灰色预测建模方式,得到分段折弯上模下压量和折弯成形角的数学模型;并在ABAQUS仿真软件中模拟验证出预测模型与实际最大误差为0.14%,满足实际生产要求。该研究表明,在实际折弯生产过程中,可以通过对上模下压量的调节得到预期的折弯成形角,使得折弯成形角的精确控制成为可能。

In order to solve the problem of insufficient bending precision caused by bending springback for sheet metal during bending, the relationship between bending angle and pressing amount of upper die was revealed, so that the bending angle was obtained accurately and rapidly by controlling the pressing amount of upper die. Based on the experimental data of free bending for Q235 steel, the grey prediction GM(1,1) model of the pressing amount of upper die and bending angle in free bending was established, and according to the actual situation, in order to reduce the fitting error between prediction model and actual values, the mathematical models of the pressing amount of upper die and the bending angle in the segmented bending were obtained by the head-to-tail gray prediction modeling method. Furthermore, the maximum error between the prediction model and the actual data is 0.14% by the ABAQUS simulation verification, which meets the actual production requirements. The research shows that the expected bending angle is obtained by the control of the pressing amount of upper die during the actual bending process, and the accurate control of bending angle is possible.

基金项目:
国家自然科学基金青年项目(51405145);湖北省教育厅科学研究计划青年人才项目(Q20144404)
作者简介:
付争伟(1995-),男,硕士研究生 E-mail:1065171787@qq.com 通讯作者:赵刚(1976-),男,博士,教授 E-mail:zhaogang76@wust.edu.cn
参考文献:


[1]郭哲锋. 薄板的折弯回弹及拉深成形预测模型的研究
[D]. 南京:东南大学,2017.


Guo Z F. Research of Prediction Model on Sheet Bending Springback and Deep Drawing
[D]. Nanjing: Southeast University,2017.



[2]张学广,卢锴钧,何广忠,等. 材料性能波动对板件折弯回弹的影响规律研究
[J]. 航空制造技术,2018,61(18):48-66.


Zhang X G,Lu K J,He G Z,et al. Material properties fluctuation effects on bending springback of high strength steel
[J]. Aeronautical Manufacturing Technology,2018,61(18):48-66.



[3]Badr O M, Rolfe B, Zhang P, et al. Applying a new constitutive model to analyse the springback behaviour of titanium in bending and roll forming
[J]. International Journal of Mechanical Sciences, 2017, 128-129:389-400.



[4]付泽民. 高强度金属板多道次渐进折弯成形及回弹研究
[D]. 武汉:华中科技大学,2010.


Fu Z M. Study for Multiple-step Incremental Air-bending Forming and Springback of High-strength Sheet-metal
[D]. Wuhan:Huazhong University of Science and Technology,2010.



[5]曹志勇, 夏巨谌,金俊松,等. 最小二乘法支持向量机弯曲回弹元模型技术研究
[J]. 塑性工程学报,2017,24(2):1-9.


Cao Z Y,Xia J C,Jin J S,et al. Research on meta-model of least square support vector machine for the bending springback
[J]. Journal of Plasticity Engineering,2017,24 (2):1-9.



[6]李欧卿,梁庆伟,武殿梁. 钣金弯曲成形回弹问题的理论研究
[J]. 塑性工程学报,2003,10(1):47-51.


Li O Q,Liang Q W, Wu D L. Theory research on the springback for sheet bending
[J]. Journal of Plasticity Engineering,2003,10 (1):47-51.


[7]李茂廷,刘颖. 回弹机理的研究与控制综述
[J]. 机械工程与自动化,2017,8(4):224-226.


Li M T,Liu Y. Review on research and control of springback mechanism
[J]. Mechanical Engineering and Automation,2017,8(4):224-226.



[8]蔡自豪. 基于数据预处理技术的灰色预测建模方法及应用研究
[D]. 广州:暨南大学,2017.


Cai Z H. Studies on Modeling Methods and Applications of Grey Prediction Based on Data Processing Technology
[D]. Guangzhou:Jinan University,2017.



[9]Xue X, Liao J, Vincze G, et al. Modelling and sensitivity analysis of twist springback in deep drawing of dual-phase steel
[J]. Materials & Design, 2016, 90: 204-217.



[10]李健强. 材料本构模型的参数标定及其在高强度钢板材弯曲回弹预测中的应用
[D]. 广州:华南理工大学,2017.


Li J Q. Constitutive Model Parameter Identification and Its Application to Bending Springback Prediction of High Strength Sheet Metal
[D]. Guangzhou:South China University of Technology,2017.



[11]王磊. 典形钣金件的折弯工艺与回弹研究
[D]. 合肥:合肥工业大学,2011.


Wang L. The Study of Bending Process and Springback for Typical Sheet Metal Component
[D]. Hefei:Hefei University of Technology,2011.



[12]曾亮. 新时变参数灰色预测模型及其应用
[J]. 系统科学与数学,2017,37(1):143-154.


Zeng L. A new time-varying parameter grey model and its application
[J]. Journal of Systems Science and Mathematical Sciences,2017,37(1):143-154.



[13]张军. 灰色预测模型的改进及其应用
[D]. 西安:西安理工大学,2008.


Zhang J. Improvement of Grey Forecasting Model and Its Application
[D]. Xi′an:Xi′an University of Technology,2008.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9