冷轧压下量对汽车轻量化用高锰钢高温退火组织的影响
|
英文标题:Influence of cold rolling reduction on microstructure of high temperature annealing for high manganese steel used for car lightweight |
作者:李伟 王凯 |
单位:郑州科技学院 中国科学院 金属研究所 |
关键词:高锰钢 冷轧 α-M 逆转变 压下量 退火处理 |
分类号:TG142.33 |
出版年,卷(期):页码:2019,44(11):164-169 |
摘要:
|
经过冷轧变形处理后合金基体中的马氏体发生相变,实验测试分析了冷轧压下量对汽车轻量化用高锰钢高温退火组织的影响,同时测试了不同退火温度下α-M发生逆转变的组织特征。研究结果表明:在高锰钢试样基体内的组织基本都是由γ相晶粒构成,还生成部分α-M相;当压下量增大至70%时,合金组织发生了显著细化,试样内形成了与轧制方向保持平行排布状态的组织,此时γ相和α-M相所占的比例保持基本稳定,α-M相的体积比达到了95%左右;经过10 min保温处理后,γ相的比例几乎达到100%。大部分冷轧样品经过退火处理后都存在马氏体逆转变现象,α-M逆转变期间,当保温时间增加后,可以更快地发生逆转变,γ相比例也随之增大。
|
The martensite in the alloy matrix undergoes phase transformation after the deformation treatment of cold rolling. Then, the influence of cold rolling reduction on the microstructure of high temperature annealing for high manganese steel used for car lightweight was analyzed by experiments, and the microstructure characteristics of α-M inverse transformation at different annealing temperatures were also tested. The results show that the structure in the matrix of high manganese steel is mainly composed of γ phase grains, and some α-M phases are also formed. When the reduction is up to 70%, the microstructure of alloy significantly refines, and the microstructure formed in the sample arranges in parallel with the rolling direction. At this time, the proportion of γ phase and α-M phase remains basically stable, and the volume ratio of α-M phase reaches about 95%. Then, after thermal insulation treatment for 10 min, the proportion of γ phase reaches almost 100%. However, most cold rolling samples have reverse transformation of martensite after annealing treatment. During the α-M reverse transformation period, when the thermal insulation time increases, the reverse transformation occurs faster, and the proportion of γ phase also increases.
|
基金项目:
|
河南省科技攻关计划项目(182102210553);河南省教育厅高等学校重点科研项目(20B460016)
|
作者简介:
|
李伟(1983-),男,硕士,副教授,E-mail:lizhouchuan691450@126.com
|
参考文献:
|
[1]Vercammen S, Blanpain B, De Cooman B C, et al. Cold rolling behaviour of an austenitic Fe-30Mn-3Si-3Al TWIP-steel: The importance of deformation twinning [J]. Acta Materialia, 2004, 52(7): 2005-2012. [2]王星星,彭进,崔大田,等. 镀锡银钎料钎焊316LN不锈钢的接头组织及力学性能[J]. 稀有金属, 2017, 41(10): 1167-1173. Wang X X, Peng J, Cui D T, et al. Microstructure and mechanical properties of 316LN stainless steel brazed joints based on silver brazing filler metals with plating tin[J]. Chinese Journal of Rare Metals, 2017, 41(10): 1167-1173. [3]Sato K, Ichinose M, Hirotsu Y, et al. Effects of deformation induced phase transformation and twinning on the mechanical properties of austenitic Fe-Mn-Al alloys [J]. ISIJ Int., 1989, 29(1): 868-874. [4]孙秀荣, 王会珍, 杨平,等. 不同结构金属高速压缩力学行为及微观剪切结构差异 [J]. 金属学报, 2014, 50(4): 387-394. Sun X R, Wang H Z, Yang P, et al. Mechanical behaviors and micro-shear structures of metals with different structures by high-speed compression [J]. Acta Metallurgica Sinica, 2014, 50(4): 387-394. [5]Li J, Yang H Y, Yang P. Prolonged work hardening range in high manganese TRIP steel during adiabatic shear band formation [J].Mater. Lett., 2014, 134(9): 180-188. [6]李媛媛, 张大磊, 常建刚. 高压热处理对耐磨高锰钢硬度的影响[J].热加工工艺,2019,48(10):210-212,216. Li Y Y, Zhang D L, Chang J G. Effect of high pressure heat treatment on hardness of wear-resistant manganese steel [J]. Hot Working Technology,2019,48(10):210-212,216. [7]纪振晖, 李国平, 罗丰华, 等. 铬含量对碳化钛-高锰钢钢结硬质合金组织与性能的影响[J]. 硬质合金,2019,36(3):235-240. Ji Z H, Li G P, Luo F H, et al. Effect of chromium content on microstructure and properties of high manganese steel-bonded TiC carbide [J]. Cemented Carbide, 2019, 36(3):235-240. [8]庞晓琛. 热处理工艺对合金化高锰钢组织及性能的影响[J].热加工工艺,2019,48(2):224-226. Pang X C. Effect of heat treatment process on microstructure and properties of alloyed high manganese steel [J]. Hot Working Technology, 2019,48(2):224-226. [9]朱恺, 伍翠兰, 谢盼, 等. 奥氏体/铁素体层状条带结构高锰钢的微观组织及其性能[J].金属学报,2018,54(10):1387-1398. Zhu K, Wu C L, Xie P, et al. Microstructure and mechanical properties of an austenite/ferrite laminate structured high-manganese steel [J]. Acta Metallurgica Sinica, 2008, 54(10):1387-1398. [10]Hu B, Luo H W, Yang F, et al. Recent progress in medium-Mn steels made with new designing strategies, a review [J]. J. Mater. Sci. Technol., 2017, 33(5): 1457-1462. [11]王金明, 万响亮, 王红鸿,等. 冷变形对高锰奥氏体钢组织以及力学性能的影响[J].材料热处理学报,2019,40(9):100-106. Wang J M, Wan X L, Wang H H, et al. Effects of cold deformation on microstructure and mechanical properties of high manganese austenitic steel [J]. Journal of Materials Heat Treatment,2019,40(9):100-106. [12]Tomata Y, Gong W, Harjo S, et al. Reverse austenite transformation behavior in a tempered martensite low-alloy steel studied using in situ neutron diffraction [J]. Scr. Mater., 2017, 133(8): 79-86.
|
服务与反馈:
|
【文章下载】【加入收藏】
|
|
|