摘要:
|
为研究冷变形及碳含量对节镍型高氮奥氏体不锈钢应变硬化的影响规律,选取2种碳含量和6种变形量的节镍型高氮奥氏体不锈钢进行拉伸实验,根据实验结果绘制工程应力-工程应变曲线,结合实验结果及微观组织分析,得出结论:高氮奥氏体不锈钢在冷轧过程中,随着变形量增加,屈服强度及抗拉强度均呈现大幅度上升,但伸长率逐渐降低。随着奥氏体晶粒拉长,微观组织中孪晶密度随着变形量的加大而增加,变形孪晶破坏,孪晶在滑移分割作用下呈现条带状。对比不同变形量的冷轧材料拉伸结果,屈强比随冷变形量的增加而增加。在小变形量(10%~20%)时,加工硬化值随着碳含量的增加而减小;当变形量较大时,随着应变量的增加,含碳量高的实验钢表现出更强的加工硬化。
|
In order to study the influence rules of cold deformation and carbon content on the strain hardening of low-nickel high nitrogen austenitic stainless steel, two kinds of carbon contents and six kinds of deformation amounts of low-nickel high nitrogen austenitic stainless steel were selected for tensile test. Based on the test results, the engineering stress-engineering strain curves were drawn. Combining with the test results and microstructure analysis, the conclusion shows that in the cold rolling process of high nitrogen austenitic stainless steel, the yield strength and tensile strength increase greatly with the increasing of deformation amount, but the elongation decreases. However, with the increasing of austenite grain elongation, the twin density in the microstructure increases with the increasing of deformation amount, the deformation twin is destroyed, and the twin appears strip-like due to slip splitting. Comparing the tensile results of cold rolled materials with different deformation amounts, the yield-strength ratio increases with the increasing of cold deformation amount. When the deformation amount is small (10%-20%), the work hardening value decreases with the increasing of carbon content, but when the deformation amount is larger, the test steel with high carbon content shows stronger work hardening with the increasing of strain.
|
基金项目:
|
|
作者简介:
|
翟永臻(1967-),男,学士,教授级高工,E-mail:hbisjs@126.com;通讯作者:袁建路(1967-),男,学士,教授,E-mail:779533356@qq.com
|
参考文献:
|
[1]李光强, 董廷亮. 高氮钢的基础研究及应用进展[J]. 中国冶金, 2007, 17(7):5-11. Li G Q, Dong T L. Progresses on applications and fundamental of high nitrogen steels[J]. China Metallurgy, 2007, 17(7):5-11. [2]刘海定, 王东哲, 魏捍东,等. 高氮奥氏体不锈钢的研究进展[J]. 特殊钢, 2009, 30(4):45-48. Liu H D, Wang D Z, Wei H D, et al. Research progress in high nitrogen austenite stainless steel[J]. Special Steel, 2009, 30(4):45-48. [3]Li H B, Jiang Z H, Feng H, et al. Microstructure, mechanical and corrosion properties of friction stir welded high nitrogen nickel-free austenitic stainless steel[J]. Materials & Design, 2015, 84: 291-299. [4]汤旭炜. Mn18Cr18N护环钢工艺的基础研究[D]. 北京: 北京科技大学, 2017. Tang X W. Basic Research on the Technology of Mn18Cr18N Retaining Ring Steel[D]. Beijing: University of Science and Technology Beijing, 2017. [5]王松涛. 高氮奥氏体不锈钢的力学行为及氮的作用机理[D]. 北京: 中国科学院研究生院(理化技术研究所), 2008. Wang S T. Mechanical Behavior and Nitrogen Action Mechanism of High Nitrogen Austenitic Stainless Steel[D]. Beijing: Graduate School of Chinese Academy of Sciences (Institute of Physical and Chemical Technology), 2008. [6]崔大伟, 曲选辉, 李科. 高氮低镍奥氏体不锈钢的研究进展[J]. 材料导报, 2005, 19(12):64-67. Cui D W, Qu X H, Li K. Research progress in high-nitrogen low-nickel austenitic stainless steels[J]. Materials Review, 2005, 19(12):64-67. [7]刘瑜. 奥氏体不锈钢24Mn18Cr3Ni0.62N疲劳性能的研究[D]. 镇江: 江苏大学, 2009. Liu Y. Study on Fatigue Property of Austenitic Stainless Steel 24Mn18Cr3Ni0.62N[D]. Zhenjiang: Jiangsu University, 2009. [8]赵英利,李建新,张雲飞,等. 高氮不锈钢热轧开裂原因分析及工艺改进[J]. 河北冶金, 2015, (4):53-55. Zhao Y L, Li J X, Zhang Y F, et al. Reason analysis and process improvement for cracks on high-nitrogen stainless steel in hot rolling[J]. Hebei Metallurgy, 2015, (4):53-55. [9]GB/T 228.1—2010, 金属材料拉伸试验第1部分:室温试验方法[S]. GB/T 228.1—2010, Metallic materials—Tensile testing—Part 1 : Method of test at room temperature [S]. [10]杨瑞成, 夏渊, 胡天雷,等. 几种不锈钢的拉伸应变硬化行为[J]. 兰州理工大学学报, 2011, 37(1):5-8. Yang R C, Xia Y, Hu T L, et al. Tensile strain hardening behav-ior of several kinds of stainless steels[J]. Journal of Lanzhou University of Technology, 2011, 37(1):5-8. [11]张田宏, 杜义, 张俊旭. 碳和氮元素对高强度奥氏体焊缝组织和性能的影响[J]. 焊接学报, 2007, 28(7):81-84. Zhang T H, Du Y, Zhang J X, Effect of carbon and nitrogen on microstructure and properties of austenite weld metal[J]. Transactions of the China Welding Institution, 2007, 28(7):81-84. [12]胡丽华. 基于Q345材料的大变形程度真实应力应变曲线及硬化特性研究[D]. 秦皇岛: 燕山大学, 2017. Hu L H. Real Stress-strain Curve and Hardening Characteristic of Q345 Material with Large Deformation[D]. Qinhuangdao: Yanshan University, 2017. [13]Shin J H, Lee J W. Effects of twin intersection on the tensile behavior in high nitrogen austenitic stainless steel[J]. Materials Characterization, 2014, 91(5):19-25. [14]Roach M D, Wright S I. Investigations of twin boundary fatigue cracking in nickel and nitrogen-stabilized cold-worked austenitic stainless steels[J]. Materials Science & Engineering A, 2014, 607: 611-620.
|
服务与反馈:
|
【文章下载】【加入收藏】
|
|
|