网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于气体相对射速比的加热炉温度场仿真
英文标题:Simulation on temperature field for heating furnace based on gas relative injection speed ratio
作者:郭宁 何非 周玉龙 
单位:南京理工大学 机械科学研究总院江苏分院有限公司 
关键词:温度场 相对射速比 温度均匀性 射速比区间 高效加热区域 
分类号:TG155
出版年,卷(期):页码:2019,44(12):122-130
摘要:

以燃气室式加热炉为研究对象,采用CFD仿真技术对炉膛内燃气燃烧过程建立了实体模型并进行了燃烧模拟。对炉内温度场的变化和均匀性进行模拟,通过设定天然气和空气不同的相对射速比,分析其对炉内温度场分布情况和区域温度均匀性的影响,找出加热炉内温度均匀性较好的空间分布,为钢坯合理装炉提供指导依据。仿真分析结果表明:空气与天然气的相对射速比越小,炉内燃烧的平均温度越高,高温区域覆盖越多,温度分布越均匀,其中,使各项指标均达到最优的射速比区间为1.2~1.4;同时,在最优相对射速比下也存在高温区和低温区,通过对加热炉各部分温度云图及仿真数据的比较分析,确定了高效加热区域,为锻件合理装炉、减少加热时间、节约燃气和降低废气的排放提供了理论基础。

For the gas-fired heating furnace, the solid model of the gas combustion process inside the furnace were established and the combustion simulation was conducted by the simulation technology CFD.  The change and uniformity of temperature field inside the furnace was simulated. Then, by setting different relative injection speed ratios of natural gas and air, the influences of them on the distribution of temperature field and regional temperature uniformity inside the furnace were analyzed, and the good spatial distribution of temperature uniformity inside the heating furnace was found to provide guidance for the reasonable installation of steel billet in the furnace. Simulation analysis results show that the smaller the relative injection speed ratio of air and natural gas is, the higher the average combustion temperature inside the furnace is, the more the high-temperature area is covered, and the more even the temperature distribution is. Among them, the range of the injection speed ratio to make each indicator be optimal is 1.2-1.4. At the same time, there are also high temperature zones and low temperature zones under the optimal relative injection speed ratio. Furthermore, through the comparative analysis of the temperature distribution at each part of the heating furnace and the simulation data, the high efficiency heating zone is determined to provide a theoretical basis for the reasonable installation of forgings in the furnace, reducing the heating time, saving the gas and reducing the emission of waste gas.

基金项目:
国家自然科学基金资助项目(51575280);2017年智能制造综合标准化与新模式项目(工信厅装函 [2017] 468号)
作者简介:
郭宁(1994-),男,硕士研究生 E-mail:1249793525@qq.com 通讯作者:何非(1982-),男,博士,副教授 E-mail:26171809@qq.com
参考文献:


[1]刘佳璐. 锻造炉温度场的研究与建模
[D].天津:天津大学,2012.


Liu J L. Research and Modeling of Forge Furnace Temperature Field
[D]. Tianjin:Tianjin University,2012.



[2]Lee D E, Kim M Y . Optimum residence time for steel productivity and energy saving in a hot rolled reheating furnace
[J]. Journal of Mechanical Science and Technology, 2013, 27(9):2869-2877.



[3]Jang J H, Lee D E, Kim M Y, et al. Investigation of the slab heating characteristics in a reheating furnace with the formation and growth of scale on the slab surface
[J]. International Journal of Heat and Mass Transfer, 2010, 53(19-20):4326-4332.



[4]Han S H, Chang D, Huh C . Efficiency analysis of radiative slab heating in a walking-beam-type reheating furnace
[J]. Energy, 2011, 36(2):1265-1272.



[5]Tang G, Wu B, Bai D, et al. Modeling of the slab heating process in a walking beam reheating furnace for process optimization
[J]. International Journal of Heat and Mass Transfer, 2017, 113:1142-1151.



[6]Emadi A, Saboonchi A, Taheri M, et al. Heating characteristics of billet in a walking hearth type reheating furnace
[J]. Applied Thermal Engineering, 2014, 63(1):396-405.



[7]Liu Y J, Li J D, Misra R D K, et al. A numerical analysis of slab heating characteristics in a rolling type reheating furnace with pulse combustion
[J]. Applied Thermal Engineering, 2016, 107:1304-1312.



[8]冯亮花,刘坤,康小兵,等.步进式加热炉板坯温度场数值模拟
[J].辽宁科技大学学报,2011,34(1):39-43.


Feng L H, Liu K, Kang X B,et al. Numerical simulation of slab temperature field in walking beam reheating furnace
[J].Journal of University of Science and Technology Liaoning,2011:34(1):39-43.



[9]周璇.大型立式淬火炉温度分布参数系统控制策略研究和应用
[D].长沙:中南大学,2006.


Zhou X. Research and Application of Temperature Control Strategies Based on Distributed Parameter System in Large-scale Vertical Quenching Furnace
[D]. Changsha: Central South University,2006.



[10]Vuthaluru R, Vuthaluru H B . Modelling of a wall fired furnace for different operating conditions using FLUENT
[J]. Fuel Processing Technology, 2006, 87(7):633-639.



[11]谢峻林,金明芳,梅书霞.全氧燃烧玻璃熔窑燃烧器安装高度的优化模拟
[J].武汉理工大学学报,2011,33(3):26-31.


Xie J L, Jin M F, Mei S X. Numerical simulation of the effect rule of the burners’ installation height on combustion space in oxy-fuel glass furnace
[J]. Journal of Wuhan University of Technology,2011,33(3):26-31.



[12]王开远.GB/T 9452—2003《热处理炉有效加热区测定方法》介绍
[J].机械工业标准化与质量,2005,(8):5-9.


Wang K Y.GB/T 9452—2003 “Determination of effective heating zone in heat treatment furnace” introduction
[J]. Standardization and Quality of Machinery Industry,2005,(8):5-9.



[13]左霞.热处理炉炉温均温性测试方法及结果评定
[J].计测技术,2010,30(3):62-63.


Zuo X. Test method and result evaluation of temperature uniformity of heat treatment furnace
[J]. Metrology & Measurement Technology,2010,30(3):62-63.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9