网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
短碳纤维增强铝基复合材料拉伸性能数值模拟分析
英文标题:Numerical simulation analysis of tensile properties for short carbon fiber reinforced aluminum matrix composites
作者:东星倩 何涛 霍元明 刘洪君 孙安娜 洪浩洋 
单位:上海工程技术大学 
关键词:碳纤维 铝基复合材料 拉伸性能 真空吸铸工艺 Geodict 
分类号:TG146
出版年,卷(期):页码:2019,44(12):167-173
摘要:

为了探究碳纤维对复合材料拉伸性能的影响,使用真空吸铸法制备了碳纤维增强铝基复合材料铸件并测试其拉伸性能,将实验所得数据结合Geodict软件分析了碳纤维含量和碳纤维长度对碳纤维增强铝基复合材料的应力、应变分布的影响规律,得到的模拟结果与实验数据吻合良好,为使用真空吸铸法制备碳纤维增强铝基复合材料的后续工作展开和性能提升提供了理论基础。结果表明,随着碳纤维含量的增加,纤维对材料拉伸性能的增强效果越好;随着碳纤维长度的增加,纤维对材料拉伸性能的增强效果逐渐减小,并在5 mm后达到平稳的趋势,当纤维长度为1 mm时,复合材料的拉伸性能较优。

In order to explore the influence of carbon fiber on the tensile properties of composites, the carbon fiber reinforced aluminum matrix composite castings were prepared by vacuum suction casting method and their tensile properties were tested. The influence of carbon fiber content and carbon fiber length on the stress and strain distributions of carbon fiber reinforced aluminum matrix composite was analyzed by combining the experimental data with the Geodict software. The simulation results are in good agreement with the experimental data, which provides research basis for the follow-up work and performance improvement of carbon fiber reinforced aluminum matrix composite prepared by vacuum casting method. The results show that with the increasing of carbon fiber content, the reinforcing effect of fiber on the tensile properties of material is better. Furthermore, with the increasing of carbon fiber length, the reinforcing effect of fiber on the tensile properties of material gradually decreases and becomes stable after 5 mm. When the fiber length is 1 mm, the tensile properties of composites are superior.

基金项目:
国家重点研发项目(2018YFB1307900);国家自然科学基金资助项目(51805314);上海市科委重点攻关项目(16030501200)
作者简介:
东星倩(1995-),女,硕士研究生 E-mail:1315434385@qq.com 通讯作者:何涛(1979-),男,博士,副教授 E-mail:hetao@sues.edu.cn
参考文献:


[1]邱磊,蔡靖凯,孙敏,等.航空发动机铝合金筒体关键件锻造成形工艺
[J].锻压技术,2018,43(4):16-21.


Qiu L,Cai J K,Sun M, et al. Forging process of key parts in aluminum alloy cylinder for aero-engine
[J]. Forging & Stamping Technology,2018,43(4):16-21.



[2]王松伟,张士宏,陈岩,等.某铝合金复杂锻件成形工艺设计及DEFORM-3D模拟优化
[J].锻压技术,2018,43(5):154-161.


Wang S W,Zhang S H,Chen Y,et al. Forming process design and DEFORM-3 D simulation optimization for a complex aluminum alloy forging
[J]. Forging & Stamping Technology,2018,43(5):154-161.



[3]王飞舟. 低含量短碳纤维增强铝基复合材料的制备工艺探索及性能研究
[D]. 郑州:郑州大学, 2017.


Wang F Z. Preparation and Performance Study of Low Content Short Carbon Fiber Reinforced Aluminum Matrix Composites
[D]. Zhengzhou:Zhengzhou University, 2017.



[4]He T, Liu H J, Shi X J, et al. Effect of Si and Mn on microstructure and mechanical properties of vacuum suction casting Al-4.5 Cu alloy
[J]. Strength of Materials, 2018, 50(4): 665-673.



[5]Rentsch R, Pecat O, Brinksmeier E. Macro and micro process modeling of the cutting of carbon fiber reinforced plastics using FEM
[J]. Procedia Engineering, 2011, 10: 1823-1828.



[6]Tuncer E, L′Abee R. Numerical modeling of non-woven fiber mats: Their effective mechanical and electrical properties
[J]. International Journal of Computational Materials Science & Engineering, 2015, 4(2): 155-161.



[7]江真,刘文博,焦卫卫,等. 短切碳纤维/乙烯基酯树脂片状模塑料拉伸性能的有限元模拟
[J]. 复合材料学报, 2019, 38(2): 1-8.


Jiang Z, Liu W B, Jiao W W, et al. Finite element simulation of tensile properties of chopped carbon fiber/vinyl ester resin sheet molding compounds
[J]. Journal of Composite Materials, 2019, 38(2): 1-8.



[8]李光耀,冯雪瑞,蒋浩,等.碳纤维-铝合金电磁铆接与准静态压铆对比
[J].锻压技术,2017,42(4):85-90.


Li G Y,Feng X R,Jiang H, et al. Comparison electromagnetic riveting with quasi-static pressure riveting for CFRP-aluminum alloy sheets
[J]. Forging & Stamping Technology,2017,42(4):85-90.



[9]Pan T, He T, Huo Y, et al. Effect of the processing parameters on the microstructure and pro-perties of the ZL116 aluminium alloy after vacuum suction casting
[J]. Materials and Technology,2018, 52 (6): 795-801.



[10]李和平.金属材料室温拉伸试验方法
[J]. 理化检验:物理分册, 2003,(4):48-51.


Li H P. Tensile test method for metal materials of national standard
[J]. Physical Testing and Chemical Analysis Part A:Physical Testing, 2003,(4): 48-51.



[11]Yu K, He T, Huo Y, et al. Effects of processing parameters on the microstructure and mechanical properties of Al-Si-Cu alloy after vacuum suction casting
[J]. Materials and Technology,2019, 53 (5): 655-663.



[12]王敏. 搅拌法制备镀镍碳纤维ZL101基复合材料的研究
[D]. 沈阳:沈阳工业大学, 2017.


Wang M. Preparation of Nickel-plated Carbon Fiber ZL101 Matrix Composites by Stirring Method
[D]. Shenyang:Shenyang University of Technology, 2017.



[13]董尚利,杨德庄,江中浩. 短纤维增强铝基复合材料强化机制评述
[J]. 材料科学与工程学报, 2000, 18(1): 121-125.


Dong S L, Yang D Z, Jiang Z H. Review of strengthening mechanisms for discontinuous fiber reinforced aluminium matrix composites
[J]. Journal of Materials Science and Engineering, 2000, 18(1): 121-125.



[14]Lu Z, Yuan Z, Qiang L. 3D numerical simulation for the elastic properties of random fiber composites with a wide range of fiber aspect ratios
[J]. Computational Materials Science, 2014, 90(1): 123-129.



[15]丁代存.合金元素对铝合金带筋机械构件拉伸和冲击性能的影响
[J].锻压技术,2018,43(1):164-169.


Ding D C. Influence of alloying elements on tensile and impact properties of aluminum alloy mechanical components with reinforced bar
[J]. Forging & Stamping Technology, 2018, 43 (1): 164-169.



[16]Zhang J, Liu S, Zhang Y, et al. Fabrication of woven carbon fibers reinforced Al-Mg (95-5 wt%) matrix composites by an electromagnetic casting process
[J]. Journal of Materials Processing Technology, 2015, 226(1): 78-84.

 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9