网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
机械紧固件用新型钛合金的锻造温度优化
英文标题:Optimization on forging temperature of new titanium alloy for mechanical fasteners
作者:周渝庆  张祥 
单位:重庆工业职业技术学院 
关键词:机械紧固件 钛合金 锻造温度 耐磨损性能 抗氧化性能 
分类号:TG146.4
出版年,卷(期):页码:2020,45(1):35-40
摘要:

 采用不同的锻造温度对机械紧固件用新型钛合金进行了锻造试验,并进行了耐磨损性能和高温抗氧化性能的测试与分析。结果表明:随始锻温度从1020 ℃升高至1100 ℃,试样的磨损体积和单位面积质量增重先减小后增大,与1020 ℃始锻时相比,始锻温度为1080 ℃时试样的磨损体积减小了35.48%,单位面积质量增重减小了36.36%。随终锻温度从800 ℃升高至880 ℃,试样的磨损体积和单位面积质量增重先减小后增大,与800 ℃终锻时相比,终锻温度为860 ℃时试样的磨损体积减小了42.86%,单位面积质量增重减小39.13%。机械紧固件用新型钛合金Ti-3Al-5Mo-4.5V-1Sr-0.5Ce的始锻温度优选为1080 ℃、终锻温度不低于860 ℃。

 The forging tests of new titanium alloy for mechanical fasteners were conducted at different forging temperatures, and the wear resistance and high temperature oxidation resistance properties were tested and analyzed. The results show that the wear volume and weight gain per unit area of specimens decrease first and then increase with the increasing of initial forging temperature from 1020 ℃ to 1100 ℃. Compared with the initial forging at 1020 ℃, the wear volume and weight gain per unit area of specimens decrease by 35.48% and 36.36% respectively when the initial forging temperature is 1080 ℃. With the increasing of final forging temperature from 800 ℃ to 880 ℃, the wear volume and weight gain per unit area of specimens decrease first and then increase. However, compared with the final forging at 800 ℃, the wear volume and the weight gain per unit area of specimens decrease by 42.86% and 39.13% respectively when the final forging temperature is 860 ℃. Thus, the initial forging of Ti-3Al-5Mo-4.5V-1Sr-0.5Ce titanium alloy for mechanical fasteners is preferred to be at 1080 ℃ and the final forging temperature is not less than 860 ℃. 

基金项目:
重庆市自然科学基金资助项目(cstc2012jjA0004)
作者简介:
作者简介:周渝庆(1980-),男,硕士,副教授 E-mail:yunguan74046@163.com
参考文献:

 [1]赵庆云,由洋,王立东,.航空紧固件用Ti-5553合金的组织和性能[J].材料工程,2017,45(10):95-102.


Zhao Q Y, You Y, Wang L D, et al. Microstructure and properties of Ti-5553 alloy for aerospace fasteners[J]. Journal of Materials Engineering,2017,45(10):95-102.


[2]何海林.浅析钛合金材料在航空紧固件中的应用[J].军民两用技术与产品,2017,(12):121.


He H L. Analysis of the application of titanium alloy in aviation fastener[J]. Dual Use Technologies & Products, 2017,(12):121.


[3]魏庆.汽车用金属紧固件平台化选用原则[J].汽车工程师,2017,(2):15-18.


Wei Q. Selection principle of metal fastener platform for automobile[J]. Auto Engineer, 2017,(2):15-18.


[4]张颖楠,李明强,张树启,.热加工对TB3合金显微组织与性能的影响[J].金属热处理,2000,25(9):14-15.


Zhang Y N, Li M Q,Zhang S Q, et al. Effects of hot-processing on microstructure and tensile  properties for TB3 alloy[J].  Heat Treatment of Metals, 2000,25(9):14-15.


[5]商国强,王新南,唐斌,.紧固件用Ti-45Nb合金丝材的性能评价[J].中国有色金属学报,2010,20(S1):70-74.


Shang G Q, Wang X N, Tang B, et al. Property evaluation of Ti-45Nb alloy wires used in fastener[J].The Chinese Journal of Nonferrous Metals, 2010,20(S1):70-74.


[6]董瑞峰,李金山,唐斌,.航空紧固件用钛合金材料发展现状[J].航空制造技术,2018,61(4):86-91.


Dong R F, Li J S, Tang B, et al. Research development of titanium for fastener application in aerospace[J]. Aeronautical Manufacturing Technology, 2018,61(4):86-91.


[7]宋庆华.钛合金紧固件在机械加工中存在的问题及措施[J].科技视界,2017,(10):76,86.


Song Q H. Problems and measures existing in mechanical processing of titanium alloy fasteners[J]. Science & Technology Vision, 2017,(10):76,86.


[8]梁斌,崔强,芮乐顺,.加氢反应器用35CrMoA螺母开裂原因分析[J].炼油技术与工程,2019,49(1):49-53.


Liang B, Cui Q, Rui L S, et al.Analysis of cracking cause of 35CrMoA nut in hydrogenation reactor[J]. Petroleum Refinery Engineering, 2019,49(1):49-53.


[9]祝其高,张先鸣.我国紧固件行业技术发展[J].金属制品,2010,36(1):11-13.


Zhu Q G, Zhang X M. Technology development of domestic fastener industry[J]. Steel Wire Products, 2010,36(1):11-13.


[10]张利军,王幸运,郭启义,.钛合金材料在我国航空紧固件中的应用[J].航空制造技术,2013,(16):129-133.


Zhang L J, Wang X Y, Guo Q Y, et al. Application of titanium alloy in Chinese aircraft fastener[J]. Aeronautical Manufacturing Technology, 2013,(16):129-133.


[11]杨光,王斌,钦兰云, .激光和电弧增材制造TC4钛合金组织和性能研究[J].稀有金属,2018,42(9):903-908.


Yang G, Wang B, Qin L Y, et al. Microstructure and properties of TC4 titanium alloy by laser deposition and wire & arc additive manufacturing[J]. Chinese Journal of Rare Metals,2018,42(9):903-908.


[12]李双寿,郑伟超,汤彬, .稀土、锶复合添加对AM60镁合金组织和性能的影响[J].铸造,2007,56(1):18-22.


Li S S, Zheng W C, Tang B, et al. Effects of rare earths and strontium composite additions on microstructure and properties of AM60 magnesium alloy[J].Foundry,2007,56(1):18-22.


[13]刘琳,侯公羽.含锶高强建筑铝合金锻压温度优化[J].锻压技术,2018,43(4):22-26.


Liu L, Hou G Y. Optimization of forging temperature of high strength aluminum alloy with strontium for building[J]. Forging & Stamping Technology,2018,43(4):22-26.


[14]邓雨亭,李四清,黄旭.β锻TC17钛合金力学性能各向异性研究[J].稀有金属,2018,42(8):885-890.


Deng Y T, Li S Q, Huang X. Anisotropy of mechanical properties of β processed TC17 titanium alloy[J]. Chinese Journal of Rare Metals,2018,42(8):885-890.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9