网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
圆管内翻边成形的数值模拟及参数优化管材成形
英文标题:Numerical simulation and parameter optimization on inward flanging for tube
作者:赵洋 肖洋 戴鹏瞩 邓华超 马莹 
单位:重庆邮电大学 先进制造工程学院 
关键词:圆管 内翻边成形 冲击力 凸模角度 起皱 
分类号:TG386
出版年,卷(期):页码:2020,45(1):80-88
摘要:

 以摩托车减震器一翻边成形部件为研究对象,建立圆管内翻边的有限元模型,利用数值模拟方法,分析翻边过程中应力、应变和冲击力的变化。该部件在翻边过后,圆管端缘存在由于变形堆积而起皱的缺陷,针对该缺陷选取圆管不同的结构参数以及凸模的外形,建立不同工况下的有限元模型并对比分析翻边结果。结果表明,当圆管壁厚减小值d取0.25 mm、凸模角度θ为75°时,翻边后的圆管端缘起皱情况得到较好改善,凸模冲击力降低。最后,根据参数化分析结果确定凸模上移余量在0~0.03 mm范围内时,损耗比可控制在5%以下。

 For the flanging forming part of motorcycle shock absorber, the finite element model of inward flanging for tube was set up, and the changes of stress, strain and impact force in the flanging process were analyzed by numerical simulation. After flanging of part, the wrinkling occurred at the end edges of tube due to the deformation accumulation. Based on the different structure parameters of tube and shapes of punch, the various finite element models under different working conditions were established, and the flanging results were compared and analyzed. The results show that when the reduction of wall thickness d is 0.25 mm and the punch angle θ is 75°, the wrinkling at the end edges of tube is improved well and the  impact force of punch is reduced after flanging. Finally, according to the results of parametric analysis, the loss ratio is controlled below 5% when the upward displacement margin of punch is in the range of 0-0.03 mm. 

基金项目:
国家自然科学基金资助项目(51807019);重庆市基础与前沿研究计划项目(cstc2016jcyjA0443);重庆市教委科学技术研究项目(KJQN201900632)
作者简介:
作者简介:赵洋(1988-),男,博士,副教授 E-mail:zhaoyang@cqupt.edu.cn 通讯作者:马莹(1985-),女,博士,讲师 E-mail:samecqupt@163.com
参考文献:

 [1]王孝培.冲压手册[M].北京:机械工业出版社,2012.


Wang X P. Stamping Manual[M]. Beijing: China Machine Press2012.


[2]娄利霞.曲面翻边类零件成形工艺研究[D].济南:山东大学,2007.


Lou L X. Research of Techniques of Curved Flanging[D]. Jinan: Shandong University2007.


[3]冯兰,蔡英文,何丹农,等.金属板料成形数值模拟的研究现状[J].塑性工程学报,200411(6):1-6.


Feng L, Cai Y W, He D N, et al. Research status of numerical simulation of sheet metal forming[J]. Journal of Plasticity Engineering200411(6):1-6.


[4]王海生,陈泽民,刘建雄,等.基于DYNAFORM的圆孔翻边数值模拟研究[J].热加工工艺,200938(5):86-89.


Wang H S, Chen Z M, Liu J X, et al. Numerical simulation research for hole-flanging based on DYNAFORM software[J]. Hot Working Technology200938(5):86-89.


[5]高锦张,曹宇,贾俐俐.单道次渐进成形圆孔翻边的数值模拟[J].塑性工程学报,201522(3):79-85.


Gao J Z, Cao Y, Jia L L. Numerical simulation for hole flanging by single stage incremental forming [J]. Journal of Plasticity Engineering201522(3):79-85


[6]肖夏.曲面翻边件的数值模拟及工艺参数优化研究[D].南昌:南昌大学,2013.


Xiao X. Simulation and Process Parameters Optimization Study for Curved Flanging[D]. Nanchang: Nanchang University2013.


[7]卢险峰,张朝阁,李湖峰,等.锥形冲头翻边变形应力场的数值仿真[J].塑性工程学报,200714(3):36-39.


Lu X F, Zhang C G, Li H F, et al. Numerical simulation of deformation stress field of conical punch flanging[J]. Journal of Plasticity Engineering200714(3):36-39.


[8]林启权,袁中林,王振球. 厚板局部镦粗圆孔翻边的数值模拟[J].热加工工艺,2011,40(3):82-84.


Lin Q Q, Yuan Z L, Wang Z Q. Numerical simulation on upsetting-burring process for thick sheet [J]. Hot Working Technology2011,40(3):82-84.


[9]顾仲,高锦张.1060铝板单道次渐进成形圆孔翻边高度与壁厚分布的研究[J].锻压技术,201944(4):48-56.


Gu Z, Gao J Z. Study on height and wall thickness distribution of hole-flanging by single-pass incremental forming for 1060 aluminum plate[J]. Forging & Stamping Technology201944(4):48-56.


[10]Ding L G. A process design for large diameter of flanging hole and the calculation of the flanging force[J]. Machine Tool & Hydraulics2015,(18):105-109.


[11]王文远.复杂半管零件成形工艺方法的研究[D].沈阳:沈阳航空航天大学,2016.


Wang W Y. Research on the Forming Process Mmethod for a Complex Half Tube Part[D]. Shenyang: Shenyang Aerospace University2016.


[12]李敏.小直径开缝衬套翻边工艺及冷挤压强化性能研究[D]. 南京:南京航空航天大学,2017.


Li M. Research on Flanging Process and Cold Extrusion Strengthening Performance of Small Diameter Split Sleeve[D]. Nanjing: Nanjing University of Aeronautics and Astronautics2017.


[13]韩兆明.压料力对U型件弯曲回弹的影响分析[A].2017年第七届全国地方机械工程学会学术年会暨海峡两岸机械科技学术论坛论文集[C].文昌:海南省机械工程学会,2017.


Han Z M. Analysis of the affect of pressing force on bending springback of U-shaped parts[A]. Proceedings of the 7th National Association of Local Mechanical Engineering Academic Conference and the Cross-Strait Machinery Science and Technology Academic Forum in 2017[C]. Wenchang: Hainan Provincial Mechanical Engineering Society2017.


[14]孙宇幸,刘莹莹,张君彦,等.应力集中和应力比对TC18合金锻件疲劳强度的影响[J].稀有金属,201943(7):699-705.


Sun Y X, Liu Y Y, Zhang J Y, et al. Fatigue strength of TC18 titanium alloy forgings with different stress concentrations and stress ratios[J]. Chinese Journal of Rare Metals201943(7):699-705.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9