摘要:
|
为研究Cu-Cr-Zr合金的高温热变形行为,建立Cu-Cr-Zr合金的高温本构模型,采用Gleeble-1500D热模拟实验机对该合金进行不同变形条件下的热压缩实验。实验参数为:变形量60%、应变速率0.1~5 s-1、变形温度650~900 ℃。实验结果表明:变形初始阶段加工硬化大于动态软化作用,使得应力值迅速增大至峰值,之后动态软化大于加工硬化作用,使得应力值降低至一定程度再趋于平稳。通过对Cu-Cr-Zr合金应力-应变曲线的变化规律进行分析可得,低应变速率和高变形温度都会促进合金动态再结晶的程度。利用计算软件对实验数据进行计算和整理,将由线性拟合所得数值代入Arrhenius本构模型,可得Cu-Cr-Zr合金的本构模型。
|
In order to study the high temperature thermal deformation behavior of Cu-Cr-Zr alloy, the high temperature constitutive model of Cu-Cr-Zr alloy was established,and the thermal compression experiments under different deformation conditions were conducted by Gleeble-1500D thermal simulator. The experimental parameters were the deformation amount of 60%, the strain rate of 0.1-5 s-1, and the deformation temperature of 650-900 ℃. The experiment results show that the work hardening effect is greater than the dynamic softening effect in the initial stage of deformation, so that the stress value increases rapidly to the peak value, then the dynamic softening effect is greater than the work hardening effect, so that the stress value decreases to a certain extent and then stabilizes. By analyzing the variation of stress-strain curve for Cu-Cr-Zr alloy, the low strain rate and the high deformation temperature promote the degree of dynamic recrystallization for alloy. Furthermore, the experimental data is calculated and sorted by calculation software, and the constitutive model of Cu-Cr-Zr alloy is obtained by substituting the linearly fitted value into the Arrhenius constitutive model.
|
基金项目:
|
山西省科技重大专项(20181101002);山西省重点学科建设经费资助
|
作者简介:
|
陈莹(1993-),女,硕士研究生,E-mail: 786398420@qq.com;通讯作者:党淑娥(1965-),女,博士,教授,硕士生导师,E-mail:shuedang@163.com
|
参考文献:
|
[1]李爱娜,骆仕斌. Cu-Cr-Zr-Ag-P合金的热加工性能[J].金属热处理,2018, 43(6): 222-226. Li A N, Luo S B. Hot-working performance of Cu-Cr-Zr-Ag-P alloy[J]. Heat Treatment of Metals, 2018, 43(6): 222-226. [2]李银华,刘平, 贾淑果, 等. 铜合金热变形行为研究[J].金属热处理,2008, 33(8): 29-32. Li Y H, Liu P, Jia S G, et al. Study on hot defomation behavior of copper alloy[J]. Heat Treatment of Metals, 2008, 33(8): 29-32. [3]谢水生,李彦利,朱琳.电子工业用引线框架铜合金及组织的研究[J].稀有金属,2003,27(6): 769-776. Xie S S, Li Y L, Zhu L. Progress of study on lead frame copper alloy and its implementation in electronic industry [J]. Chinese Journal of Rare Metals, 2003, 27(6): 769-776. [4]赵冬梅,董企铭,刘平.探索高强高导铜合金最佳成分的尝试[J].功能材料,2007,32(6): 609-611. Zhao D M, Dong Q M, Liu P. Exploring for optimum chemical composition of copper alloy with high strength and electrical conductivity [J]. Journal of Functional Materials, 2007, 32(6): 609-611. [5]张文芹,郑晨飞.铜及铜合金带材表面质量控制及技术现状[J].有色金属材料与工程,2016, 37(4): 125-131. Zhang W Q, Zheng C F. Surface quality control and technical actuality of copper and copper alloy strip[J]. Nonferrous Metal Materials and Engineering, 2016, 37(4): 125-131. [6]张毅,柴哲, 许倩倩,等.Cu-Cr-Zr-Ag合金高温热变形及组织演变[J].材料热处理学报,2015, 36(4): 44-48. Zhang Y, Chai Z, Xu Q Q, et al. High temperature deformation behavior and microstructure of Cu-Cr-Zr-Ag alloy[J]. Transactions of Materials and Heat Treatment, 2015,36(4):44-48. [7]王静怡,王庆娟,杜忠泽. 加工工艺对Cu-Cr-Zr合金热变形行为的影响[J].特种铸造及有色合金,2015, 35(6): 666-669. Wang J Y, Wang Q J. Du Z Z. Effects of processing technology on hot-compressing deformation behavior of Cu-Cr-Zr alloy[J]. Special Casting & Nonferrous Alloys, 2015, 35(6): 666-669. [8]何霞,张彦敏,宋克兴,等.Cu-0.23Be-0.84Co合金热变形行为[J].塑性工程学报,2015, 22(2): 105-110. He X, Zhang Y M, Song K X, et al. Study on hot deformation behaviors of Cu-Be-Co alloy[J]. Journal of Plasticity Engineering, 2015, 22(2): 105-110. [9]Sellars C M, Mctegart W J. On the mechanism of hot deformation [J]. Acta Metallurgica, 1966, 14(9):1136-1138. [10]Jonas J J, Sellars C M, Mctegart W J. Strength and structure under hot working conditions [J]. International Materials Reviews, 1969, 14(1):1-24. [11]Zener C, Hollomon J H. Effect of strain rate upon the plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1):22-23.
|
服务与反馈:
|
【文章下载】【加入收藏】
|
|
|