网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
火车轮模锻成形工艺及热处理换热系数测算
英文标题:Forging process and heat transfer coefficient calculation during heat treatment for railway wheel
作者:周玉 安涛 沈晓辉 王可胜 李奔奔 琚文威 
单位:巢湖学院 马鞍山钢铁股份公司 安徽工业大学 
关键词:火车轮 模锻 淬火加热 踏面淬火 换热系数 
分类号:TG161
出版年,卷(期):页码:2020,45(3):146-151
摘要:

为研究火车轮在模锻成形过程中内部金属流动及淬火加热、踏面淬火中的换热系数和温度变化,利用有限元软件对其模锻成形及热处理过程进行数值模拟分析,并结合黄金分割优化法对综合换热系数进行了反传热计算。结果表明:模锻过程中,辐板与上模接触区域的等效应变最大,轮辋外侧变形相对较小,踏面附近区域变形较均匀;在淬火加热过程中,换热系数随工件表面温度升高而增加,当温度在500 ℃以下时,换热系数随温度的升高而快速增加,500 ℃以后,增速缓慢,800 ℃时,换热系数达0.15 kW·(m2·℃)-1;踏面淬火时,在700 ℃以下,随温度下降,换热系数迅速增大,300 ℃时达到峰值3.1 kW·(m2·℃)-1,在250 ℃以下,换热系数稍有下降,100 ℃时换热系数为2.5 kW·(m2·℃)-1。

 In order to study the internal metal flow during die forging and the heat transfer coefficient and the temperature change in quench heating and tread quenching process for railway wheel, the processes of die forging and heat treatment were simulated by the finite element method, and combined with the golden section optimization method, the inverse heat transfer calculation was performed on the comprehensive heat transfer coefficient. The results show that during the die forging process, the maximum equivalent strain appears in the contact area between the spoke and the upper die, the deformation on the outside of rim is relatively small, and the deformation in area near tread is uniform. However, the heat transfer coefficient increases with the increasing of the surface temperature during quench heating process. When the temperature is below 500 ℃, the heat transfer coefficient increases quickly with increasing temperature, after 500 ℃, the growth rate is slow, and at 800 ℃, the heat transfer coefficient reaches 0.15 kW·(m2·℃)-1. When the tread is quenched, the heat transfer coefficient increases rapidly with the decrease of temperature below 700 ℃, and it reaches a peak of 3.1 kW·(m2·℃)-1 at 300 ℃. However, below 250 ℃, the heat transfer coefficient decreases slightly, and it reaches 2.5 kW·(m2·℃)-1 at 100 ℃.
 

基金项目:
安徽高校自然科学研究重大项目(KJ2019ZD47);巢湖学院校级科研项目(XLY-201807)
作者简介:
周玉(1990-),女,硕士,讲师 E-mail:18315593012@163.com
参考文献:


[1]翟继强.车轮锻造过程数值模拟及锻造模具CAD系统
[D].济南:山东大学,2012.


Zhai J Q. The Numerical simulation of Forging Process and the CAD System for Forging Dies of Railway Wheel
[D].Jinan: Shandong University,2012.



[2]张澎湃,付秀琴,张弘,等.简析热处理工艺、踏面旋修量对动车组车轮疲劳性能的影响
[J].铁道机车车辆, 2013,


 33(6):56-60,82.


Zhang P P, Fu X Q, Zhang H, et al. Influence analysis of heat treatment process and tread reprofiling on the EMU wheel′s fatigue performance
[J].Railway Locomotive & Car, 2013,33(6):56-60,82.



[3]张鹏.双轮缘行车轮的轧制成形工艺
[J].锻压技术,2018,43(1):97-101.


Zhang P. Rolling process of double flange driving wheel
[J].Forging & Stamping Technology, 2018,43(1):97-101.



[4]安涛,肖峰,程德利,等. KKD车轮淬火加热动态测温试验及分析
[J].工业加热,2004,33(4):48-50.


An T, Xiao F, Cheng D L, et al. Experiment and analysis on the dynamical measurement temperature of KKD wheel hardening heating
[J].Industrial Heating,2004,33(4):48-50.



[5]付斌,安涛,沈晓辉,等.火车轮淬火过程中的温度场
[J].钢铁研究学报,2007,19(9):46-49.


Fu B,An T, Shen X H, et al. Temperature field during quenching process of railway wheel
[J].Journal of Iron and Steel Research,2007,19(9):46-49.



[6]刘志新. 18CrNiMo7-6齿轮热处理模拟及换热系数的测定
[D].大连:大连交通大学,2013.


Liu Z X. Numerical Simulation of Heat Treatment Process in 18CrNiMo7-6 Gear and Determination of Heat Transfer Coefficient
[D].Dalian:Dalian Jiaotong University,2013.



[7]Taler J, Zima W. Solution of inverse heat conduction problems using control volume approach
[J]. International Journal of Heat and Mass Transfer, 1999, 42(6): 1123-1140.



[8]Chantasiriwan S. Inverse determination of steady-state heat transfer coefficient
[J]. International Communications in Heat and Mass Transfer, 2000, 27(8): 1155-1164.



[9]刘庄,吴肇基,吴景之,等. 热处理过程的数值模拟
[M].北京:科学技术出版社,1996.


Liu Z, Wu Z J, Wu J Z, et al. Numerical Simulation of Heat Treatment Process
[M].Beijing:Science and Technology Press,1996.



[10]李耀平,王璐达.基于数值模拟的20MnMoNb大厚锻件性能热处理工艺优化
[J].锅炉技术,2018,49(1):53-58.


Li Y P, Wang L D. Optimization of property heat treatment process upon large-scale forged 20MnMoNb based on numerical simulation
[J].Boiler Technology,2018,49(1):53-58.



[11]Kim H K, Oh S I. Evaluation of heat transfer coefficient during heat treatment by inverse analysis
[J]. Journal of Materials processing technology, 2001, 112(2-3): 157-165.



[12]Fernandes P, Prabhu K N. Effect of section size and agitation on heat transfer during quenching of AISI 1040 steel
[J]. Journal of Materials Processing Technology, 2007, 183(1): 1-5.



[13]谭真,郭广文.工程合金热物性
[M].北京:冶金工业出版社, 1994.


Tan Z, Guo G W. Engineering Alloy Thermal Properties
[M].Beijing:Metallurgical Industry Press, 1994.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9