网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Mg-13Gd-4Y-2Zn-0.5Zr合金形变软化行为及本构方程建立
英文标题:Deformation softening behavior and establishment of constitutive model for Mg-13Gd-4Y-2Zn-0.5Zr alloy
作者:寇鑫 于建民 刘海军 崔婧玉 张治民 卢知渊 罗妮娜 王红海 
单位:中北大学 内蒙古第一机械集团有限公司 西安近代化学研究所 
关键词:稀土镁合金 热压缩 本构关系 流动软化 动态再结晶 
分类号:TG385.2
出版年,卷(期):页码:2020,45(3):166-173
摘要:

使用型号为Gleeble-3500的热压缩实验机进行热压缩实验,在实验中调控温度和应变速率,绘制流变应力曲线图并进行分析。对Mg-13Gd-4Y-2Zn-0.5Zr合金在温度为360~480 ℃、应变速率为0.001~1 s-1、并且热压缩试样的最大变形程度为60%条件下的形变软化现象进行了研究。经研究发现,Mg-13Gd-4Y-2Zn-0.5Zr合金的形变软化行为主要受其在不同变形条件下的动态再结晶行为的影响。设定材料常数 α、n、A和Q与应变构建影响关系,将应变考虑在内后,建立了Mg-13Gd-4Y-2Zn-0.5Zr合金本构方程,其平均变形激活能为232.54 kJ·mol-1。进行了误差检验,得到的峰值应力的实验值与计算值的平均相对误差的绝对值仅为5.5%,说明了建立的本构模型精度较高。

The hot compression experiment was carried out by using the hot compression machine Gleeble-3500.The temperature and strain rate were controlled and the flow stress curves were plotted and analyzed in experiments.The deformation softening phenomenon of Mg-13Gd-4Y-2Zn-0.5Zr alloy was studied under the conditions that the temperature was 360-480 ℃,strain rate was 0.001-1 s-1 and the maximum deformation degree of hot compression specimen was 60%.The results show that the deformation softening behavior of Mg-13Gd-4Y-2Zn-0.5Zr alloy was mainly affected by its dynamic recrystallization behavior under different deformation conditions.The relationships between the material constants of α,n,A and Q with the strain were set up. After taking the strain into account,the constitutive equation of Mg-13Gd-4Y-2Zn-0.5Zr alloy was established,and the average deformation activation energy was 232.54 kJ·mol-1.The error test was carried out,and the absolute value of the average relative error for peak stress between the experimental value and the calculated value is only 5.5%. The accuracy of the constitutive model is high.
 

基金项目:
国家自然科学基金资助项目(51775520);山西省自然科学基金资助项目(201901D111176,201601D021094,201801 D121106);国家重点研究发展计划(2016YFB0301103-3);国防科工局稳定支持专项开放研究项目
作者简介:
寇鑫(1994-),男,硕士研究生 E-mail:875153075@qq.com 通讯作者:于建民(1974-),男,博士,教授 E-mail:942263130@qq.com
参考文献:


[1]杨媛,李加强,宋宏宝,等.镁合金的应用及其成形技术研究现状
[J].热加工工艺,2013,42(8):24-27.


Yang Y,Li J Q,Song H B,et al. Research situation on application of magnesium alloys and its forming technology
[J]. Hot Working Technology,2013,42(8):24-27.



[2]Polmear I J. Magnesium alloys and applications
[J]. Materials Science and Technology,1994,10(1): 1-16.



[3]李新凯,张治民,赵亚丽.变形镁合金的研究现状及前景
[J].热加工工艺,2011,40(24):54-55.


Li X K,Zhang Z M,Zhao Y L. Research and future development of wrought magnesium alloy
[J].Hot Working Technology,2011,40(24):54-55.



[4]于金程,董芳,徐年宝,等. 高温高应变率下EW75镁合金动态压缩性能与组织演变
[J].稀有金属,2019,43(2):141-150.


Yu J C,Dong F,Xu N B,et al. Dynamic compressive properties and microstructural evolution of EW75 magnesium alloy at high temperatures and high strain rates
[J]. Chinese Journal of Rare Metals,2019,43(2):141-150.



[5]谭利,詹肇麟,刘攀,等. 微合金化非调质钢C38N2动态再结晶行为
[J]. 特殊钢,2012,33(4):50-52.


Tan L,Shan Z L,Liu P,et al.Behavior of dynamic recrystallization of microalloying nonquenched and nontempered steel C38N2
[J]. Special Steel,2012,33(4):50-52.



[6]王渠东,丁文江. 镁合金及其成形技术的国内外动态与发展
[J]. 世界科技研究与发展,2004,26(3):39-46.


Wang Q D,Yu W J. Trends and development of magnesium alloys and their forming technology
[J]. World Scitech R&D,2004,26(3):39-46.



[7]曹振,王旭东,董杰,等. AZ80镁合金轮毂强力旋压工艺及组织性能研究
[J]. 稀有金属,2018,42(2):139-145.


Cao Z,Wang X D,Dong J,et al. Microstructure and mechanical properties of magnesium alloy AZ80 wheel fabricated by power spinning
[J]. Chinese Journal of Rare Metals,2018,42(2):139-145.



[8]Takuda H,Fujimoto H,Hatta N . Modelling on flow stress of MgAlZn alloys at elevated temperatures
[J]. Journal of Materials Processing Technology,1998,80:513-516.



[9]楚志兵,李伟,王环珠,等. 基于元胞自动机AZ31镁合金固溶处理研究
[J]. 工程科学与技术,2019,51(2):189-196.


Chu Z B,Li W,Wang H Z,et al. Research of solution treatment of AZ31 magnesium alloy based on cellular automata
[J]. Advanced Engineering Science,2019,51(2):189-196.



[10]欧玲,浦荣,曾方欣,等. 5A06合金高温塑性变形行为
[J]. 锻压技术,2018,43(6):129-134.


Ou L,Pu R,Zeng F X,et al.High temperature plastic deformation behavior of 5A06 alloy
[J].Forging & Stamping Technology,2018,43(6):129-134.



[11]刘少飞,屈银虎,王崇楼,等. 金属和合金高温变形过程本构模型的研究进展
[J]. 材料导报,2018,32(13):2241-2251,2277.


Liu S F,Qu Y H,Wang C L,et al. Advances in constitutive models of metals and alloys during hot deformation
[J]. Materials Review,2018,32(13):2241-2251,2277.



[12]顾威. ZK60镁合金热变形行为的实验研究和数值模拟
[D]. 长沙:中南大学,2006.


Gu W. Experimental Study and Numerical Simulation of Hot Deformation Behavior of ZK60 Magnesium Alloy
[D]. Changsha:Central South University,2006.



[13]黄光杰,钱宝华,汪凌云,等. AZ31镁合金初始动态再结晶的临界条件研究
[J]. 稀有金属材料与工程,2007,36(12):2080-2083.


Huang G J,Qian B H,Wang L Y,et al. Study on the critical conditions for initial dynamic recrystallization of AZ31 magnesium alloy
[J]. Rare Metal Materials and Engineering,2007,36(12):2080-2083.



[14]崔婧钰.稀土镁合金在热扭转变形条件下的动态再结晶行为
[D].太原:中北大学,2018.


Cui J Y. Dynamic Recrystallization Behavior of Rare Earth Magnesium Alloy after Hot Torsion Deformation
[D]. Taiyuan: North University of China,2018.



[15]Sellars C M,Whiteman J A . Recrystallization and grain growth in hot rolling
[J]. Metal Science,1979,13(3-4):187-194.



[16]徐勇.轧制态TC4钛合金α+β两相区热变形行为及其低温超塑性研究
[D].南昌:南昌大学,2018.


Xu Y. Hot Deformation Behavior and Low Temperature Superplasticity of Rolled TC4 Titanium Alloy in the α+β Phase Field
[D]. Nanchang: Nanchang University,2018.



[17]Zener C,Hollomon J H. Effect of strain rate upon plastic flow of steel
[J]. Journal of Applied physics,1944,15(1): 22-32.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9