网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
退火工艺对高温叠轧AZ31镁合金板材组织与性能的影响
英文标题:Effect of annealing process on microstructure and properties of high temperature roll bonding for AZ31 magnesium alloy sheet
作者:廖本洪 时来鑫 胡励 宋登辉 周涛 
单位:重庆理工大学 
关键词:高温叠轧 AZ31镁合金 退火 累积应变量 基面织构 
分类号:TG376.5
出版年,卷(期):页码:2020,45(3):179-184
摘要:

将高温叠轧变形和退火再结晶相结合,尝试共同调控AZ31镁合金板材的组织与织构。在300 ℃下对高温叠轧AZ31镁合金板材进行不同时间的退火处理,并研究了退火对高温叠轧板材组织、晶粒取向和力学性能的影响。结果表明:随退火时间的增加,界面结合质量逐渐提高,当退火时间为30 min时,部分区域出现冶金现象;显微硬度随退火时间的增加而降低;延长退火时间,高温叠轧板材非基面取向晶粒比重显著增加,同时,高温叠轧历史累积应变量、后续退火两者共同作用促使 AZ31 镁合金板材基面织构显著弱化。

The microstructure and texture of AZ31 magnesium alloy sheet were controlled by the combination of high temperature roll bonding and annealing recrystallization. The effects of annealing on microstructure, grain orientation and mechanical properties of high temperature roll bonding for AZ31 magnesium alloy sheet were studied by annealing treatment at 300 ℃ for different times. The results show that the interfacial bonding quality increases with the increasing of annealing time.When the annealing time is 30 min, the metallurgical phenomena appears in some areas.The microhardness decreases with the increasing of annealing time.The proportion of non-base oriented grain in high temperature roll bonding sheet increases significantly with the increasing of annealing time.At the same time, the effect of historical cumulative strain and subsequent annealing of the high temperature roll bonding on the base texture of AZ31 magnesium alloy sheet is significantly weakened.

基金项目:
国家自然科学基金资助项目(51701034, 51805064);重庆市基础研究与前沿探索项目(cstc2017jcyjAX0062, cstc2018 jcyjAX0035);重庆市教委科学技术研究项目(KJ1600922, KJQN201801137)
作者简介:
廖本洪(1994-),女,硕士研究生 E-mail:15736346608@139.com 通讯作者:时来鑫(1986-),男,博士,副教授 E-mail:shilaixin2016@cqut.edu.cn
参考文献:


[1]Zhang J, Qu H, Yan S, et al. Improved hydrogen desorption properties of MgH2 by graphite and NiF2 addition: Experimental and first-principles investigations
[J]. Journal of Materials Science, 2017, 52(14): 8681-8689.



[2]Zhang J, Qu H, Yan S, et al. Enhanced hydrogen diffusion in magnesium based hydride induced by strain and doping from first principle study
[J]. Journal of Alloys and Compounds, 2017, 694: 687-693.



[3]Agnew S R, Yoo M H, Tome C N. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y
[J]. Acta Materialia, 2001, 49(20): 4277-4289.



[4]Barnett M R, Keshavarz Z, Beer A G, et al. Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn
[J]. Acta Materialia, 2004, 52(17): 5093-5103.



[5]Koike J, Kobayashi T, Mukai T, et al. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys
[J]. Acta Materialia, 2003, 51(7): 2055-2065.



[6]Watanabe H, Tsutsui H, Mukai T, et al. Deformation mechanism in a coarse-grained Mg-Al-Zn alloy at elevated temperatures
[J]. International Journal of Plasticity, 2001, 17(3): 387-397.



[7]Doege E, Drder K. Sheet metal forming of magnesium wrought alloys-formability and process technology
[J]. Journal of Materials Processing Technology, 2001, 115(1): 14-19.



[8]Su L, Lu C, Li H, et al. Investigation of ultrafine grained AA1050 fabricated by accumulative roll bonding
[J]. Materials Science and Engineering: A, 2014, 614: 148-155.



[9]Xie H, Wang M P, Chen W, et al. Microstructure, mechanical properties, and texture evolution of aluminum alloy 7005 by accumulative roll bonding
[J]. Journal of Materials Engineering and Performance, 2016, 25(3): 1199-1210.



[10]Pérez-Prado M T, Ruano O A. Grain refinement of Mg-Al-Zn alloys via accumulative roll bonding
[J]. Scripta Materialia, 2004, 51(11): 1093-1097.



[11]Huang X, Suzuki K, Watazu A, et al. Effects of thickness reduction per pass on microstructure and texture of Mg-3Al-1Zn alloy sheet processed by differential speed rolling
[J]. Scripta Materialia, 2009, 60(11): 964-967.



[12]Huang X, Suzuki K, Chino Y, et al. Improvement of stretch formability of Mg-3-Al-1Zn alloy sheet by high temperature rolling at finishing pass
[J].Journal of Alloys and Compounds,2011,509(28):7579-7584.



[13]马洪涛,杨蕴林,张柏清,等. MB26 合金的静态与动态再结晶
[J].金属热处理,1999,(2):12-13.


Ma H T,Yang Y L,Zhang B Q,et al. Static and dynamic recrystallization of MB26 alloy
[J].Heat Treatment of Metals,1999,(2) : 12-13.



[14]Tan J C,Tan M J.Superplasticity and grain boundary sliding characteristics in two stage deformation of Mg-3Al-1Zn aIloy sheet
[J].Materials Science and Engineering:A,2003,339: 81-89.



[15]詹美燕, 李元元, 陈维平, 等. AZ31 镁合金轧制板材在退火处理中的组织性能演变
[J]. 金属热处理, 2007, 32(7): 8-12.


Zhan M Y, Li Y Y, Chen W P, et al. Evolution of microstructure and mechanical properties of AZ31 magnesium alloy rolled sheets during annealing
[J].Heat Treatment of Metals,2007, 32(7): 8-12.



[16]韦大杰. 退火对累积叠轧超细晶纯 Cu、纯 Al 及 Cu/Al 复合板组织与性能影响的研究
[D].南京:南京理工大学, 2016.


Wei D J. Effect of Annealing on Microstructure and Mechanical Properties of Ultra-fine Grained Pure Cu,Pure Al and Cu/Al Laminated Composites Processed by Accumulative Roll-bonding(ARB)
[D].Nanjing:Nanjing University of Science & Technology,2016.



[17]陈贝, 陈惠芬, 徐春, 等. 退火对AZ31 镁合金板组织与性能的影响
[J]. 金属热处理, 2015, 40(11): 48-52.


Chen B, Chen H F, Xu C, et al. Effect of annealing on microstructure and properties of AZ31 magnesium alloy sheet
[J].Heat Treatment of Metals,2015, 40(11): 48-52.



[18]Perez-Prado M T, Ruano O A. Texture evolution during annealing of magnesium AZ31 alloy
[J]. Scripta Materialia, 2002, 46(2): 149-155.



[19]刘燕. Al-Mn 合金超细化组织与力学性能的研究
[D].哈尔滨: 哈尔滨工业大学, 2016.


Liu Y. Research on Ultra-fine Grains and Mechanical Properties of Al-Mn Alloy
[D].Harbin: Harbin Institute of Technology, 2016.



[20]王点,李仲洋,彭武贤,等.累积叠轧TC4合金超细晶组织的制备
[J].稀有金属材料与工程,2018,47(10):3104-3111.


Wang D,Li Z Y,Peng W X,et al.Ultra-fine grains processing for TC4 alloy by accumulative roll-bonding
[J]. Rare Metal Materials and Engineering, 2018,47(10):3104-3111.



[21]Sarigecili M A, Saygili H H, Kockar B. The tensile and impact resistance properties of accumulative roll bonded Al6061 and AZ31 alloy plates
[J]. Journal of Materials Research, 2014, 29(10): 1223-1230.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9