网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于ANSYS Workbench的龙门式折弯机机架模态分析及 工作台拓扑优化
英文标题:Modal analysis of frame and topology optimization of workbench for gantry bending machine based on ANSYS Workbench
作者:宋占杰 管殿柱 林冠屹 
单位:青岛大学 
关键词:龙门式折弯机 模态分析 拓扑优化 静力学性能 动态特性 
分类号:TH12
出版年,卷(期):页码:2020,45(4):154-158
摘要:

 为研究龙门式折弯机的静力学性能及其在满载工作时机架的抗振性能,运用ANSYS Workbench对一款龙门式折弯机机架进行有预应力的模态分析,得到静力学分析结果和前6阶固有频率及对应振型。利用拓扑优化,对折弯机工作台进行去除材料的形状优化,根据拓扑优化云图修整形状尺寸,然后在SolidWorks中对工作台模型进行重建,将优化后的模型再次导入ANSYS Workbench中进行预应力模态分析,对优化前、后机架的静力学性能和动态特性进行比较和分析。最终,优化后的工作台质量减轻了11.7%,最大等效应力也有所减小,并且,龙门式折弯机的抗振性能不会受到影响,确定了拓扑优化的可行性。

 In order to study the static properties of the gantry bending machine and its anti-vibration performance of frame during full load operation, pre-stress modal analysis of a gantry bending machine frame was processed using ANSYS Workbench. The static analysis results and the first six orders of natural frequencies and corresponding vibration modes of vibration were obtained. Using topology optimization, the shape of removed material for the bending machine workbench was optimized. The workbench model was reconstructed in SolidWorks after the shape was resized according to the topology optimization nephogram. The optimized model was imported into ANSYS Workbench again for pre-stress modal analysis, and the static properties and dynamic characteristics of the frame before and after optimization were compared and analyzed. The weight of the final workbench was reduced by 11.7%. The maximum equivalent stress was also reduced. And the anti-vibration performance of the gantry bending machine was not affected. The feasibility of topology optimization was determined.

基金项目:
作者简介:
宋占杰(1994-),男,硕士研究生 E-mail:qd_szj@163.com 通讯作者:管殿柱(1969-),男,硕士,教授 E-mail:gdz_zero@126.com
参考文献:

 [1]顾忠新, 胡智明. 基于ANSYS折弯机机架的有限元分析[J]. 锻压装备与制造技术, 2014, 49(1):26-28.


Gu Z X, Hu Z M. Finite element analysis of frame for press brake based on ANSYS[J]. China Metalforming Equipment & Manufacturing Technology, 2014, 49(1): 26-28.

[2]王林军, 王锬, 杜义贤,等.基于ANSYS Workbench的液压机机架模态分析及拓扑优化[J]. 煤矿机械, 2019, 40(3): 79-83.

Wang L J, Wang T, Du Y X, et al. Modal analysis and topology optimization of hydraulic press rack based on ANSYS Workbench[J]. Coal Mine Machinery, 2019, 40(3): 79-83.

[3]彭荣荣. 冷连轧机辊系非线性耦合振动特性分析[J]. 锻压技术, 2018,43(9):132-136,140.

Peng R R. Analysis on nonlinear coupling vibration characteristics of cold rolling mill rolls[J]. Forging & Stamping Technology, 2018,43(9):132-136,140.

[4]单佳莹, 平东良, 钱怡. 基于拓扑优化的折弯机结构优化设计[J]. 轻工机械, 2017, 35(2): 26-31.

Shan J Y, Ping D L, Qian Y. BenIling machim structure optimization based on topology optimization design[J]. Light Industry Machinery, 2017, 35(2): 26-31.

[5]毛曙宇, 陈林. 基于ANSYS Workbench的数控折弯机的优化设计[J]. 组合机床与自动化加工技术, 2017,(9): 132-135.

Mao S Y, Chen L. Optimization design of CNC bending machine based on ANSYS Workbench[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2017,(9): 132-135.

[6]CAE应用联盟组. ANSYS Workbench 15.0有限元分析从入门到精通[M]. 北京:机械工业出版社, 2014.

CAE Application Alliance Group. ANSYS Workbench 15.0 Finite Element Analysis From Entry to Mastery[M]. Beijing: China Machine Press, 2014.

[7]孙敬敬. 机械结构的模态分析方法研究综述[J]. 科技信息, 2014,(3): 80.

Sun J J. The review of research on modal analysis methods of mechanical structures[J]. Science & Technology Information, 2014,(3): 80.

[8]丁涛, 于少春. 基于ANSYS的框架结构模态数值模拟分析[J]. 辽宁工程技术大学学报:自然科学版, 2010, 29 (S1): 43-44.

Ding T, Yu S C. Frame construction mode numerical simulation analvsis based on ANSYS[J]. Journal of Liaoning Technical University: Natural Science, 2010, 29(S1): 43-44.

[9]孙晨光, 刘宇红, 冀鹏飞,等. SCARA机器人大臂结构模态分析与拓扑优化[J]. 现代制造工程, 2018,(7):51-57,73.

Sun C G, Liu Y H, Ji P F, et al. Modal analysis and topology optimization for the SCARA robot′s arm[J]. Modern Manufacturing Engineering, 2018,(7):51-57,73.

[10]濮良贵. 机械设计[M]. 第9版. 北京:高等教育出版社, 2013.

Pu L G. Mechanical Design[M]. The 9th Edition. Beijing: Higher Education Press, 2013.

[11]范如明, 李恒, 吉桂生,等. 模锻压力机机身结构与刚度分析[J]. 锻压装备与制造技术, 2016, 51(4): 19-22.

Fan R M, Li H, Ji G S, et al. Structure and stiffness analysis of die forging press fuselage [J]. Forging Equipment & Manufacturing Technology, 2016, 51(4): 19-22.

[12]何文斌, 贺绍台, 都金光,等. 400 MN钢丝缠绕模锻液压机机架动态性能研究[J]. 锻压技术, 2019, 44(2): 111-116.

He W B, He S T, Du J G, et al. Research on dynamic performance of steel wire wound frame for 400 MN hydraulic mold forging press[J]. Forging & Stamping Technology, 2019, 44(2): 111-116.

[13]李小彭, 赵光辉, 杨皓天,等. 考虑结合面影响的组合梁非线性预应力模态分析[J]. 振动与冲击, 2014, 33(4): 17-21.

Li X P, Zhao G H, Yang H T, et al. Nonlinear pre-stressed modal analysis for a composite beam considering influence of joint surface[J]. Journal of Vibration and Shock, 2014, 33(4): 17-21.

[14]蔡毅, 马秋生, 田东兴. 高压储气罐结构拓扑优化设计[J]. 机械设计与制造, 2012,339(7): 55-57.

Cai Y, Ma Q S, Tian D X. Topology optimization design of high pressure storage tank structure[J]. Machinery Design & Manufacture, 2012, 339(7): 55-57.

[15]曾祥亮, 肖露. 基于ANSYS Workbench的钢模台车门架拓扑优化方法[J]. 组合机床与自动化加工技术, 2009,(7): 23-26.

Zeng X L, Xiao L. Steel model trolley gantry topology optimizing based on ANSYS Workbench[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2009,(7): 23-26.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9