网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
温度对TNW700高温钛合金双向超塑性锥杯成形的影响
英文标题:Influence of temperature on biaxial superplastic cone-cup forming for high temperature titanium alloy TNW700
作者:张纪春 马利霞 李晓华 廖金华 
单位:中国航空制造技术研究院 
关键词:TNW700高温钛合金 超塑性 圆锥胀形试验 微观组织 塑性流变 
分类号:TG135+3
出版年,卷(期):页码:2020,45(4):195-201
摘要:

 在910,930和950 ℃这3种温度下,针对我国新型TNW700高温钛合金薄板开展了双向超塑性圆锥胀形试验,并对圆锥胀形过程进行了理论分析。结果显示:在稳定加载气压的作用下,随着温度的升高,TNW700高温钛合金板料的超塑性变形能力呈先提升、后下降的趋势,在930 ℃时获得最佳的成形高度和表面应变,且试件具有最均匀的壁厚分布和最稳定的塑性流变。950 ℃的试样比930 ℃的试样的最大表面应变下降了11.8%,但其具有最大的平均应变速率。对试件的微观组织观察可知:随着温度的升高,材料不仅发生了晶粒长大的现象,而且伴随有β相的产生;在同一温度下,随着变形量的增加,一定体积分数的β相增加有利于稳定该材料的塑性流变。

 The biaxial superplastic cone-bulging test was carried out for the new high temperature titanium alloy TNW700 sheet  under the temperature of 910, 930 and 950 ℃. And the cone-bulging process was theoretically analyzed. The results show that the superplastic deforming ability of high temperature titanium alloy TNW700 sheet increases at first and then decreases as the temperature increasing under a stable air-loading condition. At the temperature of 930 ℃, the samples obtain the best forming height and surface strain, and the samples show the most uniform thickness distribution and the most stable plastic flow. At the temperature of 950 ℃, the samples exhibit the highest average strain rate, but its maximum surface strain is decreased by 11.8% than that at the temperature of 930 ℃. Besides, by viewing the microstructure of samples, it is found that with the  increasing of temperature,not only the grain growth happens but also the β phase emerges. At the same temperature, as the deformation amount is increasing, a certain increasing volume fraction of β phase could be beneficial to its plastic flow stability.

 
基金项目:
国家自然科学基金资助项目(51334006)
作者简介:
张纪春(1986-),男,硕士,工程师 E-mail:zhangjichun123@126.com
参考文献:

 [1]黄旭,李臻熙,高帆.航空发动机用新型高温钛合金研究进展[J].航空制造技术,2014,(7):70-75.


Huang X, Li Z X, Gao F. Recent development high-temperature titanium alloys for aeroengine[J]. Aeronautical Manufacturing Technology, 2014,(7):70-75.

[2]许国栋,王凤娥.高温钛合金的发展和应用[J].稀有金属,2008,32(6):774-780.

Xu G D, Wang F E. Development and application on high-temperature Ti-based alloys[J]. Chinese Journal of Rare Metals, 2008,32(6):774-780.

[3]刘献伟,张鹏.空空导弹舵翼面的技术发展[J].航空兵器,2010,(1):12-15.

Liu X W, Zhang P. Technical development of fins and wings on air-to-air missile[J].Aero Weaponry, 2010,(1):12-15.

[4]邵杰,韩秀全.钣金成形技术在导弹弹体结构中的发展应用[J].航空制造技术,2015,(17):52-57.

Shao J, Han X Q. Development and application of metal forming technology to missile body structure[J].Aeronautical Manufacturing Technology, 2015,(17):52-57.

[5]蔡建明,曹春晓.新一代600 ℃高温钛合金材料的合金设计及应用展望[J].航空材料学报,2014,34(2):27-36.

Cai J M, Cao C X. Alloy design and application expectation of a new generation 600 ℃ high temperature titanium alloy [J]. Journal of Aeronautical Materials, 2014,34(2):27-36.

[6]侯金健,高强强,安晓婷.国内外高温钛合金研究及应用的最新发展[J].热加工工艺,2014,43(10):11-15.

Hou J J, Gao Q Q, An X T. Latest development of domestic and international research of high-temperature titanium alloy and its application[J]. Hot Working Technology, 2014,43(10):11-15.

[7]付明杰,张涛,韩秀全.TNW700高温钛合金板材超塑变形行为研究[J].稀有金属,2016,40(1):1-7.

Fu M J, Zhang T, Han X Q. Superplastic deformation behavior of TNW700 titanium alloy sheet[J]. Chinese Journal of Rare Metals, 2016,40(1):1-7.

[8]张涛,付明杰,韩秀全.TNW700钛合金板材热弯曲性能[J].材料工程,2015,43(7):68-72.

Zhang T, Fu M J, Han X Q. Hot bending properties of TNW700 titanium alloy[J]. Journal of Materials Engineering, 2015,43(7):68-72.

[9]姚罡,付明杰. TNW700高温钛合金热过程中的相组织变化分析[J].材料导报,2018,(20):17-22.

Yao G, Fu M J. Analysis of phase change in the thermal process of TNW700 high-temperature titanium alloy[J]. Materials Review, 2018,(20):17-22.

[10]马俊林,刘雨生,李萍,等.超塑性自由胀形温度对Ti2AlNb材壁厚分布的影响[J].哈尔滨工业大学学报,2016,48(5):172-177.

Ma J L, Liu Y S, Li P, et al. The influence of temperature for thickness distribution of Ti2AlNb alloy sheet ssssformed by superplastic free bulging[J]. Journal of Harbin Institute of Technology, 2016,48(5):172-177.

[11]Song Y Q, Zhao J. A mechanical analysis of the superplastic free bulging of metal sheet[J]. Materials Science and Engineering,1986,84:111-125.

[12]林兆荣.金属超塑性成形原理及应用[M].北京:航空工业出版社,1990.

Lin Z R. Principle and Application of Metal Superplastic Forming [M]. Beijing: Aviation Industry Press, 1990.

[13]Leyens C, Peters M.钛与钛合金[M].陈振华,译.北京:化学工业出版社,2005.

Leyens C, Peters M. Titanium and Titanium Alloy[M].Translated by Chen Z H. Beijing: Chemical Industry Press, 2005.

[14]Gillo Giuliano. Superplastic Forming of Advanced Metallic Materials [M].Cambridge: Woodhead Publishing Limited,2011.

[15]Fu Enikeev, Kruglov A A. An analysis of the superplastic forming of a thin circular diaphragm[J].International Journal of Mechanical Sciences,1995,37(5):473-483.

[16]D Banabic, M Vulcan, K Siegert. Testing under constant and variable strain rates of superplastic aluminum alloys[J]. CIRP Annals, 2005,54(1):205-208.

[17]Werner Beck Vulcan. Results of in-house cone-cup testing of low to high temperature SPF-alloys[J]. Materials Science Forum, 2004,447-487:145-152.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9