网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
厚度配比对轧制Cu/Al复合板拉剪强度的影响
英文标题:Influence of thickness proportion on tensile-shear strength for rolling Cu/Al composite sheets
作者:马啸昌 冯光 王涛 付文石 牛辉 
单位:太原理工大学 
关键词:轧制 厚度配比 搓轧区长度 拉剪强度 双金属复合板 裂纹 
分类号:TP182
出版年,卷(期):页码:2020,45(6):15-52
摘要:

拉剪强度是评价轧制双金属复合板质量的重要指标,受材料属性、厚度配比、轧制速度、轧制温度和压下率等多种因素影响。以轧制10 mm厚度的Cu/Al复合板为例,通过数值模拟和实验方法分析了厚度配比对搓轧区长度以及拉剪强度的影响规律,模拟结果表明,搓轧区长度随Cu厚度占比的增大而增大,轧制Cu/Al复合板拉剪强度的实测结果显示,随着Cu厚度占比的增大,拉剪分离面铜侧垂直于轧向的裂纹增多,拉剪强度提高。在Cu厚度占比为50%时,拉剪分离面铜侧裂纹最多,搓轧现象最为明显,搓轧区长度和拉剪强度均达到峰值。研究内容可为高强度双金属复合板的制备提供参考。

The tensile-shear strength is an important indicator for evaluating the quality of rolling bimetallic composite sheets, which is affected by many factors such as material properties, thickness proportion, rolling speed, rolling temperature and reduction rate. For the rolling Cu/Al composite sheet with the thickness of 10 mm, the influence laws of thickness proportion on the length of rubbing rolling zone and the tensile-shear strength were analyzed by numerical simulation and experimental methods. The simulation results show that the length of rubbing rolling zone increases with the increasing of thickness proportion for Cu. Furthermore, the measured results of tensile-shear strength for the rolling Cu/Al composite sheets show that with the increasing of thickness proportion for Cu, the crack on the copper side of tensile-shear separation surface perpendicular to the rolling direction increases, and the tensile-shear strength increases. When the thickness proportion of Cu accounts for 50%, the crack on the copper side of tensile-shear separation surface is the most, the rubbing rolling phenomenon is the most obvious, and the length of rubbing rolling zone and the tensile-shear strength reach the peak. Thus, the above research provides valuable reference for preparing high-strength bimetallic composite sheets.

基金项目:
山西省重大专项项目子课题(183060169-S);太原市科技局科技计划项目(183060073-K)
作者简介:
马啸昌(1994-),男,硕士研究生 E-mail:tyutmxc@163.com 通讯作者:冯光(1983-),男,博士,副教授 E-mail:feng_guang@yeah.net
参考文献:


[1]Akramifard H R, Mirzadeh H, Parsa M H. Cladding of aluminum on AISI 304L stainless steel by cold roll bonding: Mechanism, microstructure, and mechanical properties
[J]. Materials Science and Engineering: A, 2014, 613: 232-239.



[2]Liu H, Jin H, Shao M, et al. Investigation on interface morphology and mechanical properties of three-layer laser impact welding of Cu/Al/Cu
[J]. Metallurgical and Materials Transactions A, 2019,50: 1273-1282.



[3]Liu G, Wang Q, Zhang L, et al. Effect of cooling rate on the microstructure and mechanical properties of Cu/Al bimetal fabricated by compound casting
[J]. Metallurgical and Materials Transactions A, 2017,49: 661-672.



[4]Fei X, Ye Y, Jin L, et al. Special welding parameters study on Cu/Al joint in laser-heated friction stir welding
[J]. Journal of Materials Processing Technology, 2018,256: 160-171.



[5]赵菲, 黄庆学, 贾登峰, 等. 金属层状复合材料焊接技术现状与发展
[J]. 焊接技术,2018,47(2): 1-4.


Zhao F, Huang Q X, Jia D F, et al. The present situation and development of metal lamellar composite welding technology
[J]. Welding Technology, 2018,47(2):1-4.



[6]Jin K H, Ig H S. Effect of Ni interlayer on the interface toughening and thermal stability of Cu/Al/Cu clad composites
[J]. Metals and Materials International, 2019,25: 94-104.



[7]Li X B, Zu G Y, Ding M M, et al. Interfacial microstructure and mechanical properties of Cu/Al clad sheet fabricated by asymmetrical roll bonding and annealing
[J]. Materials Science & Engineering A, 2011,529: 485-491.



[8]左晓姣. 铜铝复合板界面扩散层组织结构与性能的研究
[D].沈阳:沈阳工业大学,2017.


Zuo X J. The Research on Organization Structure and Property of Interfacial Diffusion Layer of Cu-Al Composite Plate
[D]. Shenyang: Shenyang University of Technology,2017.



[9]赵莹莹, 王泽宇, 龚潇雨, 等. 铜铝异步轧制复合工艺及组织性能
[J]. 焊接学报,2016,37(11): 71-74.


Zhao Y Y, Wang Z Y, Gong X Y, et al. Composite technology and microstructure of copper - aluminum asynchronous rolling
[J]. Transactions of the China Welding Institution, 2016,37(11): 71-74.



[10]李建勇, 骆俊廷, 申江龙,等. 铜包铝复合材料轧制变形过程模拟及轧制力计算公式
[J]. 复合材料学报,2014,31(6):1551-1557.


Li J Y, Luo J Y, Shen J L, et al. Roll deformation process simulation and rolling force calculation formula of copper clad aluminum composites
[J]. Acta Materiae Compositae Sinica, 2014, 31(6): 1551-1557.



[11]Hwang Y M, Tzou G Y. Stress analysis of asymmetrical cold rolling of clad sheet using the slab method
[J]. Journal of Materials Engineering and Performance, 1996, 5(5): 621-631.



[12]彭志辉, 佘旭凡. 厚度比对不锈钢复合铝板性能的影响
[J]. 金属学报, 2000, 36(10): 1067-1071.


Peng Z H, She X F. Effect of thickness ratio on the properties of stainless steel clad aluminum sheet
[J]. Acta Metallurgica Sinica, 2000, 36(10): 1067-1071.



[13]彭志辉, 徐根应, 佘旭凡, 等. 厚度比对不锈钢覆铝板成形性能的影响
[J]. 金属热处理, 1999,(9): 25-27.


Peng Z H, Xu G Y, She X F. et al. Effect of thickness ratio on formability of stainless steel cladding aluminum sheet
[J]. Heat Treatment of Metals, 1999,(9): 25-27.



[14]陈鑫, 李龙, 周德敬. 冷轧铝钢复合板初始及稳定复合压下量的确定
[J]. 塑性工程学报, 2015, 22(3): 127-132.


Chen X, Li L,Zhou D J. Research of the initial and stable bonding reduction of Al-St cladding plates by cold roll bonding
[J]. Journal of Plasticity Engineering, 2015, 22(3): 127-132.



[15]姚成君. AlSn20Cu/Steel双金属板(带)复合轧制过程的厚度匹配
[J]. 钢铁研究, 2003, 31(3):24-27.


Yao C J. Coupling of thickness of bimetallic strip AlSn20Cu/Steel by composite rolling
[J]. Research on Iron & Steel, 2003, 31(3):24-27.



[16]张玉静, 徐镇. 不同厚度配比铜/铝复合板结合强度分析
[J]. 锻压技术, 2019, 44(8): 162-167.


Zhang Y J, Xu Z. Bonding strength analysis on copper/aluminum composite plates with different thickness ratios
[J]. Forging & Stamping Technology, 2019, 44(8): 162-167.



[17]张小平, 秦建平. 轧制理论
[M]. 北京:冶金工业出版社, 2006.


Zhang X P, Qin J P. The Theory of Rolling
[M]. Beijing: Metallurgical Industry Press, 2006.



[18]Shabani A, Toroghinejad M R, Shafyei A. Effect of post-rolling annealing treatment and thickness of nickel coating on the bond strength of Al-Cu strips in cold roll bonding process
[J]. Materials & Design, 2012, 40: 212-220.



[19]Mehr V Y, Toroghinejad M R, Rezaeian A. The effects of oxide film and annealing treatment on the bond strength of Al-Cu strips in cold roll bonding process
[J]. Materials & Design, 2014, 53(1): 174-181.



[20]张兵, 张巡辉, 张志娟, 等. 轧制制备Ti/Ni/Ti和Ni/Ti/Ni复合材料的组织和性能研究
[J]. 稀有金属, 2018, 42(4):373-378.


Zhang B, Zhang X H, Zhang Z J, et al. Microstructure and properties of Ti/Ni layered composite with different structure produced by roll bonding
[J]. Chinese Journal of Rare Metals, 2018, 42(4):373-378.



[21]GB/T 6396—2008,复合钢板力学及工艺性能试验方法
[S].


GB/T 6396—2008,Clad steel plates—Mechanical and technological test
[S].



[22]ASTM D1876-01,Standard Test Method for Peel Resistance of Adhesives (T-Peel Test)
[S].





[23]Xiao H, Qi Z C, Yu C, et al. Preparation and properties for Ti/Al clad plates generated by differential temperature rolling
[J]. Journal of Materials Processing Technology, 2017,249: 285-290.



[24]Bay N, Clemensen C, Juelstorp O, et al. Bond strength in cold roll bonding
[J]. CIRP Annals-Manufacturing Technology, 1985, 34(1): 221-224.



[25]Nezhad M S A, Ardakani A H . A study of joint quality of aluminum and low carbon steel strips by warm rolling
[J]. Materials & Design, 2009, 30(4):1103-1109.



[26]李铭锋, 朱政强, 张义福, 等. AZ31Mg/6061Al超声波焊接及其界面性能分析
[J]. 稀有金属, 2019, 43(6): 577-584.


Li M F, Zhu Z Q, Zhang Y F, et al. AZ31Mg/6061Al Ultrasonic Welding and Interface Performance Analysis
[J]. Chinese Journal of Rare Metals, 2019, 43(6): 577-584.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9