[1]姬亚锋. 基于负荷平衡的监控AGC在热连轧中的应用 [J]. 中国冶金, 2014, 24(2):36-39.
Ji Y F. Algorithm design and application of monitor AGC based on load balance [J]. China Metallurgy, 2014, 24(2):36-39.
[2]李维刚, 刘超, 卞皓,等. 热连轧机负荷分配优化计算策略 [J]. 钢铁研究学报, 2017,29(5): 391-396.
Li W G, Liu C, Bian H, et al. Optimization calculation strategy of load distribution for hot strip mills [J]. Journal of Iron and Steel Research, 2017,29(5): 391-396.
[3]谷向磊, 黄长清, 蔡央, 等. 智能算法优化轧制规程的优缺点及发展趋势 [J]. 热加工工艺, 2018,47(21): 1-6.
Gu X L, Huang C Q, Cai Y, et al. Advantages and disadvantages of intelligent algorithm for optimizing rolling schedule and its development trend [J]. Hot Working Technology, 2018,47(21): 1-6.
[4]王焱, 刘景录, 孙一康. 免疫遗传算法对精轧机组负荷分配的优化 [J]. 北京科技大学学报, 2002, 24(3): 339-341.
Wang Y, Liu J L, Sun Y K. Immune genetic algorithms(IGA)based scheduling optimization for finisher [J]. Journal of University of Science and Technology Beijing, 2002, 24(3): 339-341.
[5]林伟路, 丁小凤, 双远华. BP神经网络对斜轧穿孔轧制力的预测 [J]. 锻压技术, 2018, 43(10):175-178.
Lin W L, Ding X F, Shuang Y H. Prediction on rolling force of oblique rolling piercing based on BP neural network [J]. Forging & Stamping Technology, 2018, 43(10):175-178.
[6]张良. 基于BP神经网络的预切冲裁断面质量的仿真预测 [J]. 锻压技术, 2018, 43(12):175-179.
Zhang L. Simulation and prediction of cross-section quality for pre-cut blanking based on BP neural network [J]. Forging & Stamping Technology, 2018, 43(12):175-179.
[7]高蕾, 庞玉华, 孙列, 等. 热连轧精轧带钢厚度预报模型优化研究 [J]. 热加工工艺, 2013, 42(11): 92-95.
Gao L, Pang Y H, Sun L, et al. Optimization of prediction model of thickness in hot continuous precise rolling strip steel [J]. Hot Working Technology, 2013, 42(11): 92-95.
[8]Hai-Jun L I, Jian-Zhong X U, Wang G D, et al. Improvement on conventional load distribution algorithm in hot tandem mills [J]. Journal of Iron and Steel Research International, 2007, 14(2): 36-41.
[9]张进之. 热连轧机负荷分配方法的分析和综述 [J]. 宽厚板, 2004, 10(3): 14-21.
Zhang J Z. Analysis and summarization of load distribution method for hot continuous rolling mill [J]. Wide and Heavy Plate, 2004, 10(3): 14-21.
[10]姚峰, 杨卫东, 张明. 改进粒子群算法及其在热连轧负荷分配中的应用 [J]. 北京科技大学学报, 2009, 31(8): 1061-1066.
Yao F, Yang W D, Zhang M. Improved PSO and its application to load distribution optimization of hot strip mills [J]. Journal of University of Science and Technology Beijing, 2009, 31(8): 1061-1066.
[11]李荣雨, 张卫杰, 周志勇. 改进的粒子群算法在轧制负荷分配中的优化 [J]. 计算机科学, 2018, 45(7): 220-224,231.
Li R Y, Zhang W J, Zhou Z Y. Improved PSO algorithm and its load distribution of hot strip mills [J]. Computer Science, 2018, 45(7): 220-224,231.
[12]徐双. 混合粒子群算法在板带热连轧负荷分配中的应用研究 [D]. 北京:冶金自动化研究设计院, 2018.
Xu S. Research and Application of Hybrid Particle Swarm Optimization Algorithm in Load Distribution for Tandem Hot Metal Strip Rolling [D]. Beijing:Automation Research and Design Institute of Metallurgical Industry, 2018.
[13]贾树晋. 热轧生产计划与负荷分配的多目标群智能算法研究 [D]. 上海:上海交通大学, 2012.
Jia S J. Research on Multi-objective Swarm Intelligence Algorithm for Hot Rolling Production Planning and Load Distribution [D]. Shanghai:Shanghai Jiao Tong University,2012.
[14]Eberhart R C. Comparing inertia weights and constriction factors in particle swarm optimization [A]. Proceedings of the 2000 IEEE Congress on Evolutionary Computation [C]. La Jolla, CA:IEEE, 2000.
|