网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
护环液压缩径工艺数值模拟与试验研究
英文标题:Numerical simulation and experimental research on hydraulic necking technology for retaining ring
作者:李飞 李鹏 何文武 陈慧琴 
单位:太原科技大学 
关键词:Mn18Cr18N钢 护环 液压缩径 塑性变形 液体外压 模具锥角 
分类号:TB24
出版年,卷(期):页码:2020,45(7):95-102
摘要:

 采用有限元模拟与试验方法,分析了300 MW Mn18Cr18N钢护环液压缩径时的受力状态和变形规律。研究表明,液压缩径过程中,环坯内壁首先进入塑性变形状态,随着外压的逐渐升高,逐步向外壁扩展。变形过程中,环坯内壁、中壁和外壁变形相互协调。环坯内壁的等效应变和等效应力均始终大于外壁。模具锥角是影响环坯缩径形状的重要因素。由于模具锥角的改变,使得环坯端部受到的径向压力分量Fr和轴向压力分量Fz随之改变。当模具锥角较小时,径向压力分量Fr要明显大于轴向压力分量Fz,这导致采用小角度锥角的模具时,环坯缩径后往往呈现鼓肚形,当模具锥角较大时,轴向压力分量Fz将大于径向压力分量Fr,因此,采用大角度锥角的模具时,环坯缩径后呈现喇叭口形。通过数值模拟和试验验证的手段得出,当模具锥角在50°左右时,环坯可以获得较好的液压缩径效果。

 The stress states and deformation laws of 300 MW Mn18Cr18N steel retaining ring during hydraulic necking were analyzed by finite element simulation and experiment method. The result shows that the inner wall of ring blank enters plastic deformation state first, and then expands to the outer wall gradually with increasing of external pressure. During the deformation process, the deformations of ring blank′s inner, middle and outer walls are coordinated. Both the equivalent strain and equivalent stress of inner wall for ring blank are always larger than those of outer wall. The cone angle of die is an important factor that affects the shape of ring blank during necking. Due to the change of cone angles for die, the radial pressure component Fr and the axial pressure component Fz on the end of ring blank are changed accordingly. When the cone angle of die is small, the radial pressure component Fr is obviously larger than the axial pressure component Fz. It leads to the bulging shape of ring blank after necking when the die with small cone angle is used. When the cone angle of die is large, the axial pressure component Fz will be larger than the radial pressure component Fr. Therefore, when the die with large cone angle is used, the ring blank presents a trumpet shape after necking. By means of numerical simulation and experimental verification, it concludes that when the cone angle of die is about 50°, the ring blank can obtain better hydraulic necking effect.

基金项目:
国家自然科学基金资助项目(51575372);山西省科技攻关计划(工业)项目(201603D121006-2);山西省重点学科建设经费资助
作者简介:
李飞(1989-),男,博士研究生 E-mail:170723191@qq.com 通讯作者:陈慧琴(1968-),女,博士,教授 E-mail:chen_huiqin@126.com
参考文献:

 [1]梁媛, 赵景腾, 韩志杰, . 锂稀有金属在二次电池中的应用[J]. 稀有金属, 2019, 43(11): 1187-1203.


Liang Y, Zhao J T, Han Z J, et al. Application of lithium rare metal in rechargeable batteries [J]. Chinese Journal of Rare Metals, 2019, 43(11): 1187-1203.


[2]董立三. 大型护环液压胀形的加载路径研究[D]. 秦皇岛: 燕山大学, 2013.


Dong L S. Study on the Loading Path of Hydroforming Process for Retaining Ring [D]. Qinhuangdao: Yanshan University, 2013.


[3]靳兵花. Mn18Cr18N 护环外补液胀形参数可行域研究[D].秦皇岛: 燕山大学, 2011.


Jin B H. Research for the Parametric Feasible Region of Mn18Cr18N Retaining Rings in the Process of Hydraulic Expansion with Additional Liquid [D]. Qinhuangdao: Yanshan University, 2011.


[4]Lee J M, Kim C H, Ju Y H. Stress analysis and life assessment of rotor and retaining ring of generator for fossil power plant[A]. Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference[C]. CaliforniaASME, 2005.


[5]赵石岩, 严智航, 李娜, . 护环液压胀形加载路径优化设计方法[J]. 塑性工程学报, 2019, 26(3): 96-103.


Zhao S Y, Yan Z H, Li N, et al. Optimized design method for load path of retaining ring hydraulic bulging [J]. Journal of Plasticity Engineering, 2019, 26 (3): 96-103.


[6]李飞. Mn18Cr18N钢冷变形力学行为与强化参数研究[D]. 太原: 太原科技大学, 2016.


Li F. Research on Cold Deformation Mechanical Behavior and Strengthening Parameters of Mn18Cr18N Steel [D]. Taiyuan: Taiyuan University of Science and Technology, 2016.


[7]李飞, 张华煜, 何文武, . Mn18Cr18N奥氏体不锈钢的压缩拉伸连续加载变形行为[J]. 金属学报, 2016, 52 (8): 956-964.


Li F, Zhang H Y, He W W, et al. Compression and tensile consecutive deformation behavior of Mn18Cr18N austenite stainless steel [J]. Acta Metallurgica Sinica, 2016, 52 (8): 956-964.


[8]He W, Li F, Zhang H, et al. The influence of cold rolling deformation on tensile properties and microstructures of Mn18Cr18 N austenitic stainless steel [J]. Mater. Sci. Eng. A, 2019, 764:1-7.


[9]Li F, Zhang H X, He W W, et al. Stress softening and hardening during compression and tensile consecutive cyclic loading of Mn18Cr18N austenitic stainless steel [J]. Mater. Sci. Eng. A, 2017, 704: 138-146.


[10]许泽川, 李勇, 潘敏强, . 微小型薄壁内沟槽铜管旋压缩径数值模拟[J]. 塑性工程学报, 2009, 16 (5):41-47.


Xu Z C, Li Y, Pan M Q, et al. Numerical simulation of neckspinning of thinwall microgrooved copper tube [J]. Journal of Plasticity Engineering, 2009, 16 (5):41-47.


[11]杨文华, 廖哲, 郝花蕾, . 3A21铝合金锥形件旋压成形工艺[J]. 锻压技术, 2019, 44 (10):88-94.


Yang W H, Liao Z, Hao H L, et al. Spinning forming process of 3A21 aluminum alloy conical parts [J]. Forging Stamping Technology, 2019, 44 (10):88-94.


[12]刘钢, 阴雪莲,苑世剑. 管件外压成形的数值模拟及屈曲特征分析[J]. 哈尔滨工业大学学报,2006, 38(2):188-190.


Liu G, Yin X L, Yuan S J. Numerical simulation and buckling analysis of tube external pressure forming [J]. Journal of Harbin Institute of Technology, 2006, 38 (2):188-190.


[13]刘钢, 苑世剑,阴雪莲,等. 外压成形试验装置及成形特征研究[J]. 材料科学与工艺, 2006, 14 (1): 15-17.


Liu G, Yuan S J, Yin X L, et al. Research on the expermient instrument and the characteristics of external pressure forming [J]. Materials Science and Technology, 2006, 14 (1): 15-17.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9