摘要:
|
为了探讨基于电磁脉冲成形(EMF)的铝合金包边工艺的可行性,通过数值模拟研究了在不同的翻边长度、磁脉冲放电电压、线圈与板材之间距离的条件下,6014-T4铝合金板材的电磁力分布、磁感应强度以及弯曲变形规律。最后,通过实验对数值模拟结果的准确性进行了验证。实验结果表明:翻边长度越大、磁脉冲放电电压越大、线圈与板材之间的距离越短,铝板获得的磁脉冲驱动力越大,铝板弯曲变形程度越大;当磁脉冲放电电压低于2.0 kV时,铝板预包边角度不足,而当磁脉冲放电电压过高时,铝板与预包边凸模碰撞而引起回弹,说明电磁脉冲放电能量必须与预包边凸模角度相匹配。
|
In order to explore the feasibility of aluminum alloy hemming process based on electromagnetic forming (EMF), the electromagnetic force distribution, the magnetic induction strength and the bending deformation law of 6014-T4 aluminum alloy sheet under different flanging lengths, different magnetic pulse discharge voltages and different distances between coil and sheet were studied by numerical simulation, and the accuracy of the numerical simulation results were verified by experiments. The study results show that the longer the flanging length is, the greater the magnetic pulse discharge voltage is, the shorter the distance between coil and sheet is, the greater the magnetic pulse driving force obtained by the aluminum sheet is, and the greater the bending deformation of aluminum sheet is. When the magnetic pulse discharge voltage is lower than 2 kV, the pre-hemming angle of aluminum sheet is insufficient, and while the magnetic pulse discharge voltage is too high, the aluminum sheet collides with the pre-hemming punch to cause springback. Thus, it is indicates that the energy of electromagnetic pulse discharge must match the angle of pre-hemming punch.
|
基金项目:
|
国家科技重大专项(2018ZX04044-001)
|
作者简介:
|
张润凯(1993-),男,硕士研究生,E-mail:rkzhang2017@163.com;通讯作者:朱卫东 (1968-),男,硕士,研究员,E-mail:903521354@qq.com
|
参考文献:
|
[1]Hirsch J. Recent development in aluminum for automotive applications [J]. Transactions of Nonferrous Metals Society of China, 2014, 24 (7): 1995-2002. [2]Li Y B, Ma Y W, Lou M, et al. Advances in welding and joining processes of multi-material lightweight car body [J]. Journal of Mechanical Engineering, 2016, 52 (24): 1-23. [3]聂辉, 王娜. 汽车车身包边工艺及表面质量分析[J]. 模具制造, 2013, 13(8):9-12. Nie H, Wang N. Package edge technology and surface quality analysis for the automobile body[J]. Die & Mould Manufacture, 2013, 13(8):9-12. [4]梁福金. 浅谈汽车覆盖件包边型式[J]. 装备制造技术, 2016,(12):80-82. Liang F J. A type of automobile cover wrapping[J]. Equipment Manufacturing Technology, 2016,(12):80-82. [5]Ming Dao, Ming Lie. A micromechanics study on strain-localization-induced fracture initiation in bending using crystal plasticity models[J]. Philosophical Magazine A, 2001, 81(8):1997-2020. [6]Psyk V, Risch D, Kinsey B L, et al. Electromagnetic forming-A review [J]. Journal of Materials Processing Technology, 2011, 211 (5): 787-829. [7]傅爱杰,付应乾,罗震宇,等. 铝合金薄壁柱壳电磁胀形塑性失稳实验研究[J].塑性工程学报,2018,28(1):85-91. Fu A J, Fu Y Q, Luo Z Y, et al. Experimental study on plastic instability of electromagnetic bulging for thin-walled aluminum alloy cylinder [J]. Journal of Plasticity Engineering, 2018, 25 (1): 85-91. [8]Senthilnathan N, Venkatachalam G, Nilesh N S. A two stage finite element analysis of electromagnetic forming of perforated aluminum sheet metals [J]. Procedia Engineering, 2014, 97: 1135-1144. [9]Cui X H, Li J J, Mo J H, et al. Investigation of large sheet deformation process in electromagnetic incremental forming[J]. Materials & Design, 2015, 76: 86-96. [10]Jimbert P, Eguia I, Perez I, et al. Analysis and comparative study of factors affecting quality in the hemming of 6016T4AA performed by means of electromagnetic forming and process characterization[J]. Journal of Materials Processing Technology, 2011, 211: 916-924. [11] Maxwell J C. A Treatise of Electricity and Magnetism[M]. Oxford: Macmillan and Co. Publishers to the University of Oxford, 1873. [12] Golovashchenko S. Sharp flanging and flat hemming of aluminum exterior body panels[J]. Journal of Materials Engineering and Performance, 2005, 14: 508-515. [13] Cao Q L, Han X T, Lai Z P, et al. Analysis and reduction of coil temperature rise in electromagnetic forming[J]. Journal of Materials Processing Technology, 2015, 225(2): 185-194. [14] Zhang G H, Hao H Q, Wu X, et al. An experimental investigation of curved surface-straight edge hemming[J]. Journal of Manufacturing Processes, 2000, 2(4): 241-246. [15] Eplattenier P L, Cook G, Ashcraft C, et al. Introduction of an electromagnetic module in LS-DYNA for coupled mechanical thermal electromagnetic simulations[A]. Proceedings of 3rd International Conference on High Speed Forming[C]. Dortmund: Technical University Dortmund, 2008. [16]Mamalis A G, Manolakos D E, Kladas A G, et al. Electromagnetic forming and powder processing: Trends and developments[J]. Applied Mechanics Reviews, 2004, 57(4): 299-324. [17]Batygin Y V, Golovashchenko S F, Gnatov A V. Pulsed electromagnetic attraction of nonmagnetic sheet metals[J]. Journal of Materials Processing Technology, 2014, 214: 390-401.
|
服务与反馈:
|
【文章下载】【加入收藏】
|
|
|