网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
锻压机床用转台轴承摩擦力矩研究
英文标题:Research on friction torque of YRT turntable bearing for forging machine
作者:张开哲 张占立 王恒迪 张文虎 刘延斌 
单位:河南科技大学 
关键词:数控转台 转台轴承 摩擦力矩 BP神经网络 二阶响应曲面法 
分类号:TH133.33+2
出版年,卷(期):页码:2020,45(8):134-140
摘要:
摩擦力矩是转台轴承的重要性能参数之一。针对转台轴承摩擦力矩精确建模问题,基于BP神经网络与二阶响应曲面法,提出了一套新的预测转台轴承摩擦力矩的方法体系,评估了两种模型的决定系数R2、均方根误差RMSE和平均绝对误差MAE。结果表明:BP神经网络的拟合度优于二阶响应曲面法。YRT100转台轴承摩擦力矩的测试试验表明:传统力矩计算模型、二阶响应曲面模型和BP神经网络模型的平均误差分别为19.72%,9.76%和4.42%,说明BP神经网络模型的预测精度较高。研究结果为数控转台的摩擦补偿及转台轴承的低摩擦优化设计提供了一定的理论依据。
Friction torque is one of the important performance parameters of turntable bearing. For the accurate modeling of friction torque for turntable bearing, a new method for predicting the friction torque of turntable bearing was proposed based on the BP neural network and the second-order response surface method, and the decision coefficient R2, the mean square error RMSE and the mean absolute error MAE of two models were evaluated. The results show that the fitting degree of the BP neural network is better than that of the second-order response surface method. The test results of friction torque for YRT100 turntable bearing show that the average errors of the traditional torque calculation model, the second-order response surface model and the BP neural network model are 19.72%, 9.76% and 4.42% respectively, which indicates that the BP neural network model has higher prediction accuracy. Thus, the research results provide a certain theoretical basis for the friction compensation of CNC turntable and the low friction optimization and design of turntable bearing.
基金项目:
国家自然科学基金青年科学基金资助项目(51905152);河南科技大学研究生创新基金项目(CXJJ-2019-KJ10); 河南省自然科学基金资助项目(182300410273)
作者简介:
张开哲(1996-),男,硕士研究生,E-mail:zhangkaizhe01@163.com;通讯作者:张占立(1965-),男,博士,教授,硕士生导师,E-mail:13683843763@163.com
参考文献:
[1]Kania L. Modelling of rollers in calculation of slewing bearing with the use of finite elements[J]. Mechanism & Machine Theory,2006, 41(11):1359-1376.
[2]Aguirrebeitia J, Abasolo M, Avilés R, et al. Theoretical calculation of general static load-carrying capacity for the design and selection of three row roller slewing bearings[J]. Mechanism & Machine Theory, 2012, 48(1):52-61.
[3]Gncz P, Drobne M, Glode S. Computational model for determination of dynamic load capacity of large three-row roller slewing bearings[J]. Engineering Failure Analysis, 2013, 32(9):44-53.
[4]Gncz P, Potofinik R, Glode S, et al. Load capacity of a three-row roller slewing bearing raceway[J]. Procedia Engineering, 2011, 10:1196-1201.
[5]Gncz P, R, Glode S. Computational model for determination of static load capacity of three-row roller slewing bearings with arbitrary clearances and predefined raceway deformations[J]. International Journal of Mechanical Sciences, 2013, 73(4):82-92.
[6]姬丽丽,王华,潘裕斌, 等.基于非线性弹簧的三排圆柱滚子组合转盘轴承静态承载能力模型[J].轴承,2016, (2): 1-5.
Ji L L, Wang H, Pan Y B, et al. Static load capacity model of three-row roller cylindrical slewing bearing based on nonlinear spring[J]. Bearing,2016, (2):1-5.
[7]He P Y, Liu R, Hong R J, et al. Hardened race way calculation analysis of a three-row roller slewing bearing [J]. International Journal of Mechanical Sciences,2018, 137: 133-144.
[8]张占立,周鹏举,李文博,等.YRT转台轴承摩擦力矩特性研究[J]. 兵工学报,2019, 40(7):1495-1502.
Zhang Z L, Zhou P J, Li W B, et al. Study of friction torque characteristics of YRT rotary table bearing [J].Acta Armamentarii,2019,40(7):1495-1502.
[9]肖耘亚,李伟,阎振华,等. 汽车轮毂轴承单元铆合装配中内轴的径向膨胀及影响 [J].锻压技术,2019, 44 (12): 91-98.
Xiao Y Y,Li W,Yan Z H,et al. Radial expansion of inner shaft and its effect for automotive hub bearing unit during riveting assembly [J]. Forging & Stamping Technology,2019,44(12):91-98.
[10]邓四二,李兴林,汪久根,等.角接触球轴承摩擦力矩特性研究[J]. 机械工程学报, 2011, 47(5):114-120.
Deng S E, Li X L, Wang J G, et al. Frictional torque characteristic of angular contact ball bearings [J]. Journal of Mechanical Engineering,2011, 47(5):114-120.
[11]傅荟璇,赵红. MATLAB神经网络应用设计[M].北京:机械工业出版社,2010.
Fu H X, Zhao H. MATLAB Neural Network Application Design[M]. Beijing:China Machine Press, 2010.
[12]崔凤奎,苏涌翔,荣莎莎,等. 超声滚挤压轴承套圈表面粗糙度数学模型对比分析[J]. 塑性工程学报,2018,25(5):199-204.
Cui F K, Su Y X, Rong S S, et al. Comparative analysis of mathematical model for surface roughness of ultrasonic rolling extrusion bearings[J]. Journal of Plasticity Engineering, 2018, 25(5):199-204.
[13]石文天,刘玉德,王西彬,等. 微细铣削表面粗糙度预测与试验 [J]. 农业机械学报,2010, 41(1):211-215.
Shi W T, Liu Y D, Wang X B, et al. Experiment and prediction model for surface roughness in micro-milling[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010,41(1):211-215.
[14]石文天,王西彬,刘玉德,等. 基于响应曲面法的微细铣削表面粗糙度预报模型与试验研究[J]. 中国机械工程, 2009, 20(20): 2399-2402.
Shi W T, Wang X B, Liu Y D, et al. A prediction model and experimental study of surface roughness in micro-milling based on RSM[J]. China Mechanical Engineering, 2009, 20 (20): 2399-2402.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9