网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
直驱式电液伺服模锻锤控制系统AMESim仿真及控制研究
英文标题:Research on AMESim simulation and control for direct drive electro-hydraulic servo die forging hammer control system
作者:毛玺 聂少武 李阁强 丁银亭 
单位:河南科技大学 
关键词:直驱式电液伺服系统 模锻锤 伺服电机 AMESim仿真 能量控制 小波神经网络PID 
分类号:TH137
出版年,卷(期):页码:2020,45(8):141-149
摘要:
传统模锻锤采用定转速液压泵、蓄能器和打击阀方案实现对锤头的打击能量控制,存在打击能量可控性差、精确差,打击阀易损坏、寿命短等问题,提出一种采用交流伺服电机驱动定量泵的模锻锤打击能量控制方案,称为直驱式电液伺服模锻锤。针对这种新型模锻锤控制系统的精确控制问题,采用AMESim和Simulink仿真分析,提出了合适的解决方法。首先,建立交流永磁同步伺服电机和液压系统联合仿真模型,仿真分析出锤头速度和位移、泵流量及电机转速曲线,结果表明,锤头打击能量可以通过电机转速实现精确控制。针对传统PID对非线性控制的局限性,提出了一种小波神经网络PID模锻锤压力与速度的控制策略。利用cSPACE系统控制原型,通过半实物物理仿真,验证了控制方法的有效性。
The traditional die forging hammer adapts the scheme of constant speed hydraulic pump, accumulator and striking valve to control the striking energy of hammer head, and there are some problems such as poor controllability and accuracy of striking energy, easy damage and short service life of striking valve. Then, a striking energy control scheme of die forging hammer by AC servo motor driving quantitative pump was designed, which was called direct drive electro-hydraulic servo die forging hammer. For the precise control problem of this new die forging hammer control system, the simulation analysis was conducted by software AMESim and Simulink, and the appropriate solutions were proposed. Firstly, the joint simulation model of AC permanent magnet synchronous servo motor and hydraulic system was established, and the curves of speed and displacement for hammer head, pump flow and motor speed were simulated and analyzed. The results show that the striking energy of hammer head is precisely controlled by motor speed. In view of the limitation of traditional PID to nonlinear control, a wavelet neural network PID control strategy for pressure and speed of die forging hammer was proposed. Finally, using the cSPACE system to control prototype, the effectiveness of the control method was verified by semi-physical physical simulation.
基金项目:
国家自然科学基金资助项目(51705135, 51705134)
作者简介:
毛玺(1962-) ,男,学士,高级实验师,E-mail:maoxi931208@126.com
参考文献:
[1]李永堂,杜诗文. 我国液压模锻锤的研究、开发与展望[J]. 机械工程学报, 2003, 39(11):43-46.
Li Y T, Du S W. Research, development and prospect on the hydraulic die forging hammer[J]. Chinese Journal of Mechanical Engineering, 2003, 39(11):43-46.
[2]Herbert Ruger. Current situation and future development of hydraulic hammer[A]. The 8th International Forging Congress[C]. Zhejiang, 2006.
[3]赵震,白雪娇,胡成亮.精密锻造技术的现状与发展趋势[J]. 锻压技术,2018,43(7):90-95.
Zhao Z, Bai X J, Hu C L. Status and development trend of precision forging technology[J]. Forging & Stamping Technology, 2018, 43(7):90-95.
[4]樊生文, 郑凯元, 王泽庭, 等. 直驱式容积控制电液伺服系统设计与实现[J]. 电气传动, 2013, 43(9): 60-64.
Fan S W, Zheng K Y, Wang Z T, et al. Design and realize of electro-hydraulic servo system of direct drive volume control[J]. Electric Drive, 2013, 43(9): 60-64.
[5]曹明垚, 孙强, 郭慧, 等. 一种直驱式容积控制电-液伺服系统动态特性分析[J]. 液压与气动, 2013, (5): 41-44.
Cao M Y, Sun Q, Guo H, et al. Modeling and simulation of direct drive volume control electro-hydraulic servo system[J]. Chinese Hydraulics & Pneumatics, 2013, (5): 41-44.
[6]李阁强, 丁银亭, 冯勇, 等. 直驱式电液伺服模锻锤控制系统研究[J]. 锻压技术, 2019, 44(5): 93-98.
Li G Q, Ding Y T, Feng Y, et al. Research on control system for direct drive electro-hydraulic servo die forging hammer[J]. Forging & Stamping Technology, 2019, 44(5): 93-98.
[7]郭冰菁,申欢欢,李阁强. 直驱式电液执行器驱动双缸系统动态特性[J]. 液压与气动,2016,(1):24-27.
Guo B J, Shen H H, Li G Q. Dynamic characteristic of a two cylinder system drive by direct drive electro-hydraulic actuator[J]. Chinese Hydraulics & Pneumatics, 2016, (1): 24-27.
[8]Ito M, Sato H, Maeda Y. Direct drive volume control of hydraulic system and its application to the steering system of ship[A].Proceedings of FLUCOME[C]. Hayama, Japan, 1997.
[9]Sang Y, Sun W Q. Study on the compensation control of electro-hydraulic servo force loading in nonlinear variable load condition[J]. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2019, 233(6): 677-688.
[10]GB/T 2349—1980,液压气动系统及元件缸活塞行程系列[S].
GB/T 2349—1980,Fluid power systems and components—Cylinders—Basic series of piston strokes [S].
[11]Shen W, Pang Y, Jiang J H. Robust controller design of the integrated direct drive volume control architecture for steering systems[J]. ISA Transactions, 2018, 78:116-129.
[12]孙友松,程永奇,胡建国,等. 交流伺服机械压力机在金属塑性成形加工中的应用(I)——板料成形[J]. 锻压技术,2018,43(10):1-12.
Sun Y S,Cheng Y Q,Hu J G,et al. Applications of AC servo mechanical press in metal plastic forming (I)-Sheet metal forming [J]. Forging & Stamping Technology,2018, 43(10):1-12.
[13]饶裕,刘杨,齐彪,等. 直驱式系统中交流调速系统的设计[J]. 自动化技术与应用,2017,36(7):13-16.
Rao Y, Liu Y, Qi B, et al. Design of AC speed-regulating system applied in direct drive system[J]. Techniques of Automation and Applications, 2017, 36(7):13-16.
[14]王洪斌,王思文,王跃灵,等. 直驱式液压伺服系统建模及变增益滑模控制[J]. 电机与控制学报,2013,17(11):110-116.
Wang H B, Wang S W, Wang Y L, et al. Modeling and variable-gain sliding-mode control for a direct drive hydraulic servo system[J]. Electric Machines and Control, 2013, 17(11):110-116.
[15]Zad Haris Sheh, Ulasyar Abasin, Zohaib Adil. Robust model predictive position control of direct drive electro-hydraulic servo system[A]. International Conference on Intelligent Systems Engineering, IEEE[C]. Islamabad Pakistan, 2016.
[16]Sang Y, Sun W Q, Duan F H, et al. Bidirectional synchronization control for an electrohydraulic servo loading system[J]. Mechatronics, 2019, 62: 1-11.
[17]Fan Y W, Bohorquez Cindy Orozco, Ying L X. BCR-Net: A neural network based on the nonstandard wavelet form[J]. Journal of Computational Physics, 2019, 384:1-15.
[18]曾乐, 陈机林, 葛小川. 基于小波神经网络的转台伺服系统控制研究[J]. 机械制造与自动化, 2017, 49(3): 172-175.
Zeng L, Chen J L, Ge X C. Research on wavelet neural network controller for rotary table servo system[J]. Machine Building & Automation, 2017, 49 (3): 172-175.
[19]韩贺永, 乔永杰, 刘少龙,等. 基于小波神经网络控制的伺服直驱泵控系统压力与位置特性分析[J]. 锻压技术, 2018, 43(2): 122-127.
Han H Y, Qiao Y J, Liu S L, et al. Analysis on pressure and position characteristics of servo direct drive pump-control-cylinder system based on wavelet neural network control[J]. Forging & Stamping Technology, 2018, 43(2): 122-127.
[20]孙志峻, 黄卫清. 超声电机驱动多关节机器人的类PID小波神经网络控制[J]. 机械工程学报, 2009, 45(3): 215-221.
Sun Z J, Huang W Q. PID-like wavelet neural networks control for multiple joint robot driven by ultrasonic motors[J]. Journal of Mechanical Engineering, 2009, 45(3): 215-221.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9