网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
12%Cr超超临界转子钢热变形行为及高温塑性本构方程
英文标题:Hot deformation behavior and high temperature plastic constitutive equation for 12%Cr ultra-supercritical rotor steel
作者:张学忠 刘建生 何文武 孔晓寒 杨春鹏 
单位:太原科技大学 
关键词:12%Cr超超临界转子钢 应变速率 变形温度 本构方程 微观组织 
分类号:TG115.21;TG142.7
出版年,卷(期):页码:2020,45(8):184-189
摘要:
以12%Cr超超临界转子钢作为研究对象,借助Gleeble-1500D热模拟实验机,在变形温度为900~1250 ℃,应变速率为0.005,0.05,0.5和5 s-1,变形量为50%的条件下,对试样进行热变形压缩实验。通过实验得到了该材料在不同参数下的应力-应变曲线,采用Arrhenius双曲正弦函数推导出12%Cr超超临界转子钢最大变形抗力本构方程,并分析了不同热加工条件下12%Cr超超临界转子钢的微观组织。通过实验可以得出:12%Cr超超临界转子钢对变形温度和应变速率的变化较为敏感,变形温度越高,应变速率越低,所对应的应力值越小,再结晶现象越容易发生。12%Cr超超临界转子钢的变形激活能为Q=5.266×105 J·mol-1。
For 12%Cr ultra-supercritical rotor steel, the hot deformation compression experiments were conducted by thermal simulator Gleeble-1500D under the conditions of the deformation temperatures of 900-1250 ℃, the strain rates of 0.005, 0.05, 0.5 and 5 s-1 and the deformation amount of 50%, and the stress-strain curves under different parameters were obtained. Then, the constitutive equation of the maximum deformation resistance of 12%Cr ultra-supercritical rotor steel was derived by hyperbolic sine function Arrhenius, and the microstructures of 12%Cr ultra-supercritical rotor steel under different hot working conditions were analyzed. The experimental results show that 12%Cr ultra-supercritical rotor steel is sensitive to the changes of deformation temperature and strain rate. The higher the deformation temperature is and the lower the strain rate is, the smaller the corresponding stress value is, and the more easily the recrystallization phenomenon occurs. Furthermore, the deformation activation energy Q of 12%Cr ultra-supercritical rotor steel is 5.266×105 J·mol-1.
基金项目:
国家自然科学基金资助项目 (51775361);上海大件热制造工程技术研究中心(18DZ2253400)
作者简介:
张学忠(1979- ), 男,博士研究生,E-mail:466945302@qq.com;通讯作者:刘建生(1958- ), 男,博士,教授,博士生导师,E-mail:jiansliu@163.com
参考文献:
[1]王利平.我国火电机组的现状及发展趋势[J].湖南电力,1997, (4):52-56, 61.
Wang L P. Current situation and development trend of thermal power units in China [J]. Hunan Electric Power,1997, (4):52-56, 61.
[2]马晓然. 大锻件12%Cr超超临界转子钢铸态热变形行为的研究[D]. 上海:上海交通大学,2015.
Ma X R. Study on the Cast Thermal Deformation Behavior of 12%Cr Ultra-supercritical Rotor Steel for Large Forgings [D]. Shanghai: Shanghai Jiao Tong University, 2015.
[3]马力深, 钟约先, 马庆贤,等. 高中压转子钢TR1200高温变形行为的研究[J]. 塑性工程学报, 2008, 15(1):66-69.
Ma L S, Zhong Y X, Ma Q X, et al. Research on hot deformation behavior of TR1200 HP-IP rotor steel [J]. Journal of Plastic Engineering, 2008, 15(1):66-69.
[4]王宝忠. 12%Cr超超临界转子的热加工过程物理模拟及研制[J]. 材料导报, 2009, 23(12): 58.
Wang B Z. Physical simulation and development of 12%Cr ultra-supercritical rotor in thermal processing [J]. Materials Review, 2009, 23(12): 58.
[5]孙奉亮. 12%Cr超超临界转子钢锻造过程微观组织演变的实验及模拟研究[D]. 太原:太原科技大学,2011.
Sun F L. Experimental and Simulation Study on Microstructure Evolution of 12%Cr Ultra-supercritical Rotor Steel Forging Process [D]. Taiyuan: Taiyuan University of Science and Technology, 2011.
[6]陈学文, 王纳纳, 皇涛,等. 超超临界转子用X12钢高温变形行为及基于应变补偿的本构模型[J]. 材料热处理学报, 2018, 39(5): 134-140.
Chen X W, Wang N N, Huang T, et al. Hot deformation behavior of X12 steel for ultra-supercritical rotor and its constitutive model based on strain compensation [J]. Transactions of Materials and Heat Treatment, 2018, 39(5): 134-140.
[7]张世伟,杨明,梁益龙,等. 低碳钢20CrNi2Mo的高温热变形行为及热加工图[J]. 材料热处理学报, 2017, 38(8): 159-167.
Zhang S W, Yang M, Liang Y L, et al. Hot deformation behavior and hot processing map of 20CrNi2Mo low carbon steel at elevated temperature [J]. Transactions of Materials and Heat Treatment, 2017, 38(8): 159-167.
[8]Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9):1136-1138.
[9]Jonas J J, Sellars C M, Tegart W J M. Strength and structure under hot-working conditions[J]. Metallurgical Reviews, 1969, 14(1):1-24.
[10]何霞, 张彦敏, 宋克兴,等. Cu-0.23Be-0.84Co 合金热变形行为[J]. 塑性工程学报, 2015, 12(2):105-110.
He X, Zhang Y M, Song K X, et al. Study on hot deformation behaviors of Cu-Be-Co alloy [J]. Journal of Plastic Engineering, 2015, 12(2):105-110.
[11]解婧陶,王钦娟,王璐银.奥氏体不锈钢321合金不同应变速率下动态再结晶分析[J].锻压技术, 2019,44(6):178-182.
Xie J T,Wang Q J,Wang L Y. Dynamic recrystallization analysis on austenitic stainless steel 321 alloy at different strain rates[J]. Forging & Stamping Technology,2019,44(6):178-182.
[12]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1):22-32.
[13]冯泽林, 陈其伟, 王会廷. 一种热成型钢热压缩流变行为的本构方程[J]. 安徽工业大学学报: 自然科学版, 2014, 31(1): 29-33.
Feng Z L, Chen Q W, Wang H T. Constitutive model of hot forming behavior of a hot stamping steel during hot compression [J]. Journal of Anhui University of Technology: Natural Science, 2014, 31(1):29-33.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9