网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于克里金模型和智能算法的汽车加强件热冲压工艺优化
英文标题:Optimization of hot stamping process for automobile reinforcement part based on
作者:何泽歆 黄超群 
单位:何泽歆 黄超群 
关键词:汽车加强件 超高强钢 热冲压 遗传算法 克里金模型 
分类号:TG386
出版年,卷(期):页码:2020,45(10):47-52
摘要:

 将某汽车加强件作为研究对象,运用有限元数值模拟手段获得热冲压工艺和成形指标之间的对应数据。此外,使用克里金模型构建设计变量与设计指标之间的高度非线性映射关系,使用遗传算法优化克里金模型,获得全局最优参数。优化策略和优化结果表明,数值模拟结果与实验吻合较好,并且有限元分析方法能够成功地捕捉热板冲压过程的变形模式和特性;将拉丁超立方抽样和克里金模型相结合,能够准确地预测产品的成形质量,并可应用于热冲压温度和压边力的设计。遗传算法和克里金模型相结合使得汽车加强件的成形质量得到了显著的提升,消除了优化前的热冲压工艺存在的板料破裂缺陷。通过实验验证了最优参数的可行性,优化策略对超高强钢板的热冲压工艺优化具有较好的适用性。

 For an automobile reinforcement part, the corresponding data between hot stamping process and forming index were obtained by finite element numerical simulation method. In addition, the highly nonlinear mapping relationships between design variables and design indicators were constructed by the Kriging model, and the global optimal parameters were obtained by using genetic algorithm to optimize the Kriging model. The optimization strategy and optimization results show that the numerical simulation results are in good agreement with the experimental results, and the finite element analysis method can successfully capture the deformation mode and characteristics of the hot stamping process for plate. Therefore, the combination of Latin hypercube sampling and Kriging model accurately predicts the forming quality of products and is applied to the design of hot stamping temperature and blank holder force. Furthermore, the combination of genetic algorithm and Kriging model improves the forming quality of an automobile reinforcement part significantly and eliminates the crack defects of sheet metal in the hot stamping process before optimization. Thus, the feasibility of optimal parameters is verified by experiments, and the optimization strategy has good applicability for the hot stamping process optimization of ultra-high strength steel plate.

基金项目:
重庆市教委科学技术研究资助项目(KJ1737459)
作者简介:
何泽歆(1974-),女,硕士,高级讲师 E-mail:hzx_cqgs@163.com
参考文献:

 
[1]Mori K, Maki S, Tanaka Y. Warm and hot stamping of ultra high tensile strength steel sheets using resistance heating
[J]. Cirp AnnalsManufacturing Technology, 2005,54(1): 209-212.



[2]Akerstrom P, Oldenburg M. Austenilc dccomposifian duringp press hardening of a boron steelcomputer simulation and test
[J]. Journal of Materials Processing Technology,2006, 174: 399-406.


[3]Merklein M, Lechler J. Investigation of the thermomechanical properties of hot stamping steels
[J]. Journal of Materials Processing Technology, 2006, 177(1-3):452-455.


[4]刘大海, 孟维金,蒙骏鹏. DP780高强钢板材高应变率变形行为及本构模型
[J]. 塑性工程学报, 2018, 25 (1): 161-166,174. 

Liu D H, Meng W J, Meng J P. Deformation behavior and constitutive model of DP780 high strength steel at high strain rates
[J]. Journal of Plasticity Engineering, 2018, 25 (1): 161-166,174.


[5]段永川, 张芳芳, 杨柳, 等. 高强钢板自由弯曲回弹反馈控制研究
[J].塑性工程学报, 2018,25(6): 1-6.

Duan Y C, Zhang F F, Yang L, et al. Research on springback feedback control of high strength steel air bending
[J]. Journal of Plasticity Engineering, 2018,25(6): 1-6.


[6]Kitayama S, Yoshioka H. Springback reduction with control of punch speed and blank holder force via sequential approximate optimization with radial basis function network
[J]. International Journal of Mechanics and Materials in Design, 2014,10(2): 109-119.


[7]Hoffmann H, So H, Steinbeiss H. Design of hot stamping tools with cooling system
[J]. CIRP AnnalsManufacturing Technology, 2007, 56(1): 269-272.


[8]Ingarao G, Di Lorenzo R, Micari F. Analysis of stamping performances of dual phase steels: A multiobjective approach to reduce springback and thinning failure
[J]. Materials & Design, 2009. 30(10): 4421-4433.


[9]GB/T 228—2002,金属材料室温拉伸试验方法
[S].

GB/T 228—2002, Metallic materials tensile testing at ambient temperature
[S].


[10]蒋在敏, 陈炜, 谢树运, 等. B1500HS高强钢板热成形极限研究及应用
[J]. 热加工工艺, 2017,46(5):160-162,165.

Jiang Z M, Chen W, Xie S Y, et al. Research and application of hot forming limit of B1500HS high strength steel sheet
[J]. Hot Working Technology, 2017,46(5):160-162,165.


[11]李鑫, 周杰,丁蓉蓉,等.基于响应面法的副车架内高压成形工艺参数优化
[J].锻压技术,2018,43(10):111-116.

Li X, Zhou J, Ding R R, et al. Optimization on process parameters for hydroforming of subframe based on response surface method
[J]. Forging & Stamping Technology,2018,43(10):111-116.


[12]吴先洋. 基于响应面法的整体式结合齿齿轮温锻工艺优化
[J].锻压技术,2018,43(8):27-34.

Wu X Y. Optimization of warm forging process for integral combined gear based on response surface method
[J]. Forging & Stamping Technology, 2018,43(8):27-34.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管 北京机电研究所有限公司 中国机械工程学会塑性工程分会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-62920652 +86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备09032115号-5