网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
钛合金变截面薄壁管流体力学成形工艺
英文标题:Hydromechanical forming process of titanium alloy thin-walled tubes with variable cross-section
作者:袁秦峰 梁必成 孙镭 王以华 
单位:浙江申吉钛业股份有限公司 上海交大中京锻压有限公 
关键词:流体力学成形 钛合金 变截面薄壁管 成形装置 液体挤压 缩径 
分类号:TG318
出版年,卷(期):页码:2020,45(10):80-85
摘要:

 介绍用流体力学成形方法来完成沿轴向的变截面薄壁管成形装置及工艺。研究结果表明:与缩径相比,液体挤压能够增加有限的变形程度至26%;流体力学成形的薄壁管与缩颈和在动芯棒上液体挤压成形的薄壁管相比,由于前者管坯周围均有液体支撑,管内也无需填充液体或填料,驱动力亦采用无冲击压力液体,故其能够扩大各种相对变形厚度S0/D0的管坯的变形程度至33%,流体力学成形薄壁管工艺甚至能够优化相应的σz和p值。在管坯流体力学成形的周期中,变形前的管坯型腔无芯棒或堵头装置,变形后无需从型腔中抽出芯棒或堵头。本例变形程度达到33.3%,劳动生产率达40~50件·h-1。

 The forming device and process of thin-walled tube with variable section along the axial direction were realized by the hydromechanical forming method. The results show that compared with necking, liquid extrusion increases the limited degree of deformation to 26%. Compared with necking and liquid extrusion on the moving mandrel, the deformation degree of various relative deformation thickness S0/D0 for tube blank can be expanded to 33%, and the corresponding σz and p values are optimized in the hydromechanical forming process of thin-walled tube because there is liquid support around blank,and there is no need of filling liquid or filler in the tube, then the driving force is also a non-impact pressure liquid during the hydromechanical forming. Furthermore, in the cycle of hydromechanical forming for tube blank, there is no mandrel or plug device in the tube blank cavity before deformation, and there is no need to extract the mandrel or plug from the cavity after deformation. Thus, the deformation degree of this example reaches 33.3%, and the labor productivity reaches 40-50 pieces·h-1.

基金项目:
作者简介:
袁秦峰(1985-),男,学士,工程师 E-mail:rraayy_yqf@126.com 通讯作者:王以华(1944-),男,本科,研究员 E-mail:yhw006@sohu.com
参考文献:

 
[1]Агапитова О Ю, БывальцевС В, Залазинский А Г. Особености процесса гидромеханическога выдавливания заготовок
[J]. КШПОМД, 2013,(10):36-39.


Agapitova O U, Byvaltsev S V, Zalazinsky A D. Features of the process of hydromechanical extrusion of blanks
[J]. Forging and Stamping Production·Material Working By Pressure, 2013,(10):36-39.


[2]Каменецкий Б И. Исследование процесса гидроэкструзии трубчатых изделий переменого сечения
[J]. КШПОМД, 2008,(8):3-8.

Kamencku B I. The electric conductivity of tubular products was studiedForging production and metal pressure processing
[J]. Forging and Stamping Production·Material Working By Pressure, 2008,(8):3-8.


[3]GB/T 3624—2010, 钛及钛合金无缝管
[S].

GB/T 3624—2010, Titanium and titanium alloy seamless pipe
[S].


[4]王海艳, 李媛媛,宋爱利,等. 基于Dynaform的消音管液压胀形数值模拟
[J].锻压技术,2018,43(10):91-94.

Wang H Y, Li Y Y, Song A L, et al. Numerical simulation on tube hydroforming for a silencer based on Dynaform
[J]. Forging & Stamping Technology, 2018, 43(10):91-94.


[5]Пью Х. Механические свойства материалов под высоким давлением
[M]. Москва:Мир,1973.

Pew X. Mechanical Properties of Materials Under High Pressure
[M]. Moscow:Mir,1973.


[6]Lange Kurt. Handbook of Metal Forming
[M]. New York: McGrawHill,1985.


[7]上海交通大学《冷挤压技术》编写组. 冷挤压技术
[M].上海:上海人民出版社,1976.

Cold Extrusion Technology, Shanghai Jiao Tong University. Cold Extrusion Technology
[M]. Shanghai: Shanghai Peoples Publishing House, 1976.


[8]蔡晋, 刘建邦. 基于Dynaform的小半径弯管充液成形
[J].锻压技术,2019,44(8):86-91.

Cai J, Liu J B. Hydroforming of elbow tube with small radius base on Dynaform
[J]. Forging & Stamping Technology,2019,44(8):86-91.


[9]李恒, 杨合,詹梅,等.大口径薄壁钛管小弯曲半径数控热弯有限元建模分析
[A]. 全国塑性工程学会.第十一届全国塑性工程学术年会论文集
[C]. 长沙:全国塑性工程学会,2009.

Li H, Yang H, Zhan M, et al. Numerical control thermal bending finite element analysis for small bending radius of largediameter thinwalled titanium tube
[A]. National Plastic Engineering Society. Proceedings of the 11th National Plastic Engineering Annual Conference
[C]. Changsha: National Plastic Engineering Society,2009.


[10]陈岩, 陈修琳,陆敏,等. 用钛合金板锻造带球形法兰芯轴型零件新工艺
[J].锻压技术,2020,45(6):40-43.

Chen Y, Chen X L, Lu M, et al. A new for forming spherical with core shaft parts by titanium alloy plate
[J].Forging & Stamping Technology,2020,45(6):40-43.


[11]王以华. 锻模设计技术及实例
[M].北京:机械工业出版社,2009.

Wang Y H. Forging Die Design Technology and Examples
[M].Beijing: China Machine Press, 2009.


[12]苑世剑, 刘刚.面向轻量化管材成形新技术
[A]. 全国塑性工程学会.第十一届全国塑性工程学术年会论文集
[C].长沙:全国塑性工程学会,2009.

Yuan S J, Liu G. New technology for lightweight tube forming
[A]. National Plastic Engineering Society. Proceedings of the 11th National Plastic Engineering Annual Conference
[C]. Changsha: National Plastic Engineering Society,2009.


[13]郭庆磊, 郎利辉,张猛,等. 充液成形技术研究进展
[A].中国机械工程学会塑性工程分会.第16届全国塑性工程学术年会论文集
[C].太原:中国机械工程学会塑性工程分会,2019.

Guo Q L, Lang L H, Zhang M, et al. Research progress of liquid filling forming technology
[A]. Plastic Engineering Branch of Chinese Mechanical Engineering Society. Proceedings of the 16th National Plastic Engineering Academic Annual Conference
[C]. Taiyuan: Plastic Engineering Branch of Chinese Mechanical Engineering Society, 2019.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管 北京机电研究所有限公司 中国机械工程学会塑性工程分会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-62920652 +86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备09032115号-5