网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
时效工艺对电磁成形7075铝合金组织与性能的影响
英文标题:Influence of aging process on microstructure and properties of 7075 aluminum alloy by electromagnetic forming
作者:周向龙 黄长清 崔晓辉 肖昂 刘家兴 
单位:中南大学  
关键词:7075铝合金 电磁成形 力学性能 时效工艺 析出相 
分类号:TG166.3
出版年,卷(期):页码:2020,45(10):163-169
摘要:

 为了探究人工时效处理时间对电磁成形7075铝合金组织及性能的影响规律,开展了电磁成形单向拉伸试样的时效处理工艺实验。对成形后的零件进行切样,通过拉伸实验、金相显微镜、扫描电镜、透射电镜等手段,研究了时效时间对电磁成形7075铝合金的时效析出行为及力学性能的影响。结果表明:电磁成形产生的位错,有利于η′沉淀析出相的形核、析出及长大,随着时效时间的增加,位错密度降低,η′沉淀析出相数量减少,η沉淀析出相数量增多且尺寸增大。时效时间为9 h时,基体中同时析出了大量细小弥散的η′和η沉淀析出相,材料综合性能最优,其抗拉强度、屈服强度、伸长率、硬度分别为598.3 MPa、568.36 MPa、4.48%、178.3 HV。

 In order to explore the influence law of aging treatment time on the microstructure and properties of 7075 aluminum alloy in electromagnetic forming, the aging treatment process experiment of unidirectional tensile specimens by electromagnetic forming was carried out. Then, the formed parts were cut, and the influences of aging time on the aging precipitation behavior and mechanical properties of 7075 aluminum alloy in electromagnetic forming were studied by methods of tensile tests, optical microscope, scanning electron microscope, transmission electron microscope and so on. The results show that the dislocations produced by electromagnetic forming are conductive to the nucleation, precipitation and growth of η′ precipitated phase. With the increasing of aging time, the dislocation density decreases, the number of η′ precipitated phase reduces, and the number and size of η precipitated phase increase. When the aging time is 9 h, a large number of fine-dispersed η′ and η precipitated phases precipitate at the same time in the matrix, and the comprehensive properties of material are the best with the tensile strength of 598.3 MPa, the yield strength of 568.36 MPa, the elongation of 4.48% and the hardness of 178.3 HV. 

 
基金项目:
国家自然科学基金资助项目(51775563, 51405173);中南大学高性能复杂制造国家重点实验室(ZZYJKT2017-03);华中科技大学材料成形与模具技术国家重点实验室开放课题研究基金(P2017-013)
作者简介:
周向龙(1992-),男,硕士研究生 E-mail:173812050@csu.edu.cn 通讯作者:崔晓辉(1984-),男,博士,副教授 E-mail:cuixh622@csu.edu.cn
参考文献:

[1]杨守杰, 戴圣龙.航空铝合金的发展回顾与展望
[J]. 材料导报, 2005, 19(2): 76-80.

Yang S J, Dai S L. A glimpse at the aluminum development and application of alloys in aviation industry
[J]. Materials Reports, 2005, 19(2): 76-80.


[2]姬浩. 7000系高强铝合金的发展及其在飞机上的应用
[J]. 航空科学技术, 2015, (6): 75-78.

Ji H. Development and application of 7000 high strength aluminum alloys on airplane
[J]. Aeronautical Science Technology, 2015, (6): 75-78.


[3]Li H X,Bai Q L,Li Y,et al. Mechanical properties and cold cracking evaluations of four 7XXX series aluminum alloys using a newly developed index
[J]. Materials Science and Engineering: A, 2017, 698: 230-237.


[4]王洪斌, 黄进峰,杨滨,等.AlZnMgCu系超高强度铝合金的研究现状与发展趋势
[J].材料导报,2003,(9):1-4.

Wang H B, Huang J F, Yang B, et al. Current status and future directions of ultrahigh strength A1ZnMgCu aluminum alloys
[J]. Materials Reports,2003,(9):1-4.


[5]赵兴明, 邓厚阳. 不同时效处理对7075高强度铝合金组织性能的影响
[J]. 热加工工艺, 2017,46(14): 216-219.

Zhao X M, Deng H Y. Effects of different aging treatment on microstructure and properties of 7075 high strength aluminum alloy
[J]. Hot Working Technology, 2017, 46 (14):216-219.


[6]Zhang J S, Chen Z G, Ren J K, et al. Effect of new thermomechanical treatment on microstructure and properties of AlZnMgCu aluminum alloy
[J]. Chinese Journal of Nonferrous Metals, 2015, 25(4): 910-917.


[7]霍望图, 郭明星, 侯陇刚, 等. 铝合金先进形变热处理研究进展
[J]. 材料科学与工程学报, 2014,32(2): 284-292.

Huo W T, Guo M X, Hou L G, et al. Progress on research of advanced thermomechanical treatment of aluminum alloy
[J]. Journal of Materials Science and Engineering, 2014, 32(2): 284-292.


[8]陈康华, 杨振, 焦慧彬, 等. 最终形变热处理对AlZnMgCu铝合金组织和性能的影响
[J]. 湖南大学学报:自然科学版, 2019, 46(6): 24-30.

Chen K H, Yang Z, Jiao H B, et al. Influence of final thermomechanical treatment on microstructures and properties of AlZnMgCu aluminium alloy
[J]. Journal of Hunan University: Natural Sciences, 2019, 46(6): 24-30.


[9]姚梦, 张文学,付敏敏, 等. 2219铝合金环轧件形变热处理工艺研究
[J]. 热加工工艺, 2017, 46(16): 227-230.

Yao M, Zhang W X, Fu M M, et al. Study on thermomechanical treatment of 2219 aluminum alloy ring
[J]. Hot Working Technology, 2017, 46(16): 227-230.


[10]Ning A L, Liu Z Y, Zeng S M. Effect of large cold deformation after solution treatment on precipitation characteristic and deformation strengthening of 2024 and 7A04 aluminum alloys
[J]. Transactions of Nonferrous Metals Society of China, 2006, 6(4): 1121-1128.


[11]Huang Y J, Chen Z G, Zhang Z Q. A conventional thermomechanical process of AlCuMg alloy for increasing ductility while maintaining high strength
[J]. Scripta Materials, 2010, 64(5): 382-385.


[12]李海, 陈鹏, 王芝秀, 等. 时效对固溶+冷轧7075铝合金力学性能和显微组织的影响
[J].中国有色金属学报, 2018, 28(10): 1999-2008.

Li H, Chen P, Wang Z X, et al. Effect of ageing on mechanical properties and microstructures of solution treated and coldrolled 7075 Al alloy
[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(10): 1999-2008.


[13]Psyk V, Risch D, Kinsey B L, et al. Electromagnetic formingA review
[J]. Journal of Materials Processing Technology, 2011, 211(5):787-829.


[14]Balanethiram V S, Daehn G S. Hyperplasticity: Increased forming limits at high workpiece velocity
[J]. Scripta Metallurgica et Materialia, 1994, 30(4): 515-520.


[15]江洪伟, 李春峰, 赵志衡, 等. 电磁成形技术的最新进展
[J]. 材料科学与工艺, 2004, (3): 327-331.

Jiang H W, Li C F, Zhao Z H, et al. Current research situation of electromagnetic forming technique
[J]. Materials Science and Technology, 2004,(3):327-331.


[16]Ning L, Yu H, Zhu X, et al. Electromagnetic forming facilitates the transition of deformation mechanism in 5052 aluminum alloy
[J]. Materials Science & Engineering: A, 2016, 673: 222-232.


[17]Fang J, Mo J, Li J. Microstructure difference of 5052 aluminum alloys under conventional drawing and electromagnetic pulse assisted incremental drawing
[J]. Materials Characterization, 2017, 129: 88-97.


[18]GB/T 228.1—2010, 金属材料拉伸试验第1部分:室温试验方法
[S].

GB/T 228.1—2010, Metallic materials—Tensile testing—Part 1: Method of test at room temperature
[S].


[19]杨栋, 陈文琳, 王少阳,等. 7075铝合金热变形时动态再结晶晶粒度演化模型
[J]. 中国有色金属学报, 2013,(10):2748-2752.

Yang D, Chen W L, Wang S Y, et al. Dynamic recrystallization grain size evolution model of 7075 aluminum alloy during hot deformation
[J]. The Chinese Journal of Nonferrous Metals, 2013,(10):2748-2752.


[20]Gang Sha, Alfred Cerezo. Earlystage precipitation in AlZnMgCu alloy (7050)
[J]. Acta Materialia, 2004, 52(15):4503-4516.


[21]Marlaud T, Deschamps A, Bley F, et al. Influence of alloy composition and heat treatment on precipitate composition in AlZnMgCu alloys
[J]. Acta Materialia, 2010, 58(1):248-260.


[22]Berg L K, Gjnnes J, Hansen V, et al. GPzones in AlZnMg alloys and their role in artificial aging
[J]. Acta Materialia, 2001, 49(17):3443-3451.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9