网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Al5154合金比例加载下的硬化模型
英文标题:Hardening model under proportional loading for Al5154 alloy
作者:周驰 叶华钊 张昆 张赛军 
单位:华南理工大学 
关键词:Al5154合金 VTL硬化模型 Swift硬化模型 Voce硬化模型 硬化行为 
分类号:TG389
出版年,卷(期):页码:2020,45(10):198-202
摘要:

 以汽车常用Al5154合金为研究对象,构建在单拉、纯剪切及平面应变状态下的硬化模型。通过单拉、纯剪切、平面应变实验获得力学性能实验数据,提出一种考虑不同应力状态的VTL硬化模型,即在Voce硬化模型中引入表征不同应力状态的应力三轴度T和罗德参数L,采用Isight模拟优化平台进行模型参数标定。将新模型用于数值模拟,与传统的Swift和Voce硬化模型的模拟结果进行对比与分析,结果表明:传统的Swift和Voce硬化模型能够很好地描述单拉及平面应变状态下的硬化行为,但过高估计了纯剪切状态下的硬化行为,VTL硬化模型相比于Swift及Voce硬化模型能够更好地描述3种不同应力状态的硬化行为。

 For Al5154 alloy commonly used in automobile, the hardening model was constructed  under uniaxial tensile, pure shear and plane strain states. Then, the experimental data of mechanical properties were obtained by the experiments of uniaxial tensile, pure shear and plane strain, VTL hardening model was proposed considering different stress states by adding the stress triaxiality T and Lode parameter L into the Voce hardening model to characterize different stress states, and the Isight simulation optimization platform was used to calibrate the model parameters. Furthermore, the new model was used for numerical simulation, and it was analyzed and compared with the simulation results of traditional Swift and Voce hardening models. The results show that the traditional Swift and Voce hardening models well describe the hardening behavior under uniaxial tensile and plane strain states, but overestimate the hardening behavior under pure shear state. However, VTL hardening model is better than Swift and Voce hardening models to describe the hardening behavior in three different stress states.

基金项目:
广东省重点领域研发计划项目(2020B010184002)
作者简介:
周驰(1973-),男,博士,副教授 E-mail:mechzhou@scut.edu.cn 通讯作者:张赛军(1978-),男,博士,副教授 E-mail:mesjzhang@scut.edu.cn
参考文献:

 
[1]臧其其, 闫华军,张双杰,等.基于Dynaform的铝合金汽车地板梁成形分析及工艺参数优化
[J].塑性工程学报,2019,26(2):125-131.


Zang Q Q, Yan H J, Zhang S J, et al. Forming analysis and process parameter optimization of aluminum alloy automotive floor beam based on Dynaform
[J]. Journal of Plastic Engineering, 2019, 26(2):125-131.


[2]肖永清. 铝合金是现代汽车轻量化的首选材料
[J].铝加工,2005,(5):36-39.

Xiao Y Q. Aluminum alloythe optimum material for modern light weight automobile
[J]. Aluminium Fabrication, 2005, (5):36-39.


[3]张文沛, 李欢欢, 胡志力, 等.车用轻量化铝合金材料本构关系研究进展
[J].材料导报,2017,31(13):85-89,112.

Zhang W P, Li H H, Hu Z L, et al. Progress in constitutive relationship research of aluminum alloy for automobile lightweighting
[J]. Materials Reports, 2017,31(13):85-89,112.


[4]李尧, 彭书华, 杨俊杰.电致塑性效应对纯钽的流动应力影响
[J].稀有金属,2014,38(6):973-977.

Li Y, Peng S H, Yang J J. Analysis of electroplastic effect on flow stress of pure tantalum
[J]. Chinese Journal of Rare Metals, 2014,38(6):973-977.


[5]秦芳诚, 齐会萍, 康跃华, 等.AA6061铝合金铸坯平面压缩本构模型及组织演变
[J].锻压技术,2019,44(12):159-167.

Qin F C, Qi H P, Kang Y H, et al. Constitutive model and microstructure evolution of AA6061 aluminum alloy casting blank in plain compression
[J]. Forging & Stamping Technology, 2019, 44(12):159-167.


[6]汪冠宇. 铝锂合金本构模型研究及其ABAQUS二次开发
[D].太原:中北大学,2019.


Wang G Y. Study on the Constitutive Model of AlLi Alloy and Its Secondary Development in ABAQUS
[D]. Taiyuan: North University of China, 2019.


[7]Kim J H, Kim D, Han H N, et al. Strain rate dependent tensile behavior of advanced high strength steels: Experiment and constitutive modeling
[J]. Materials Science and Engineering A, 2013, 559:222-231.


[8]Yu H Y, Si J C. A mixed hardening model combined with the transformationinduced plasticity effect
[J]. Journal of Manufacturing Processes, 2017, 28(2):390-398.


[9]Barlat F, Gracio J J, Lee M G, et al. An alternative to kinematic hardening in classical plasticity
[J]. International Journal of Plasticity, 2011, 27(9):1309-1327.


[10]Barlat F, Vincze G, Grácio, et al. Enhancements of homogenous anisotropic hardening model and application to mild and dualphase steels
[J]. International Journal of Plasticity, 2014, 58:201-218.


[11]Liao J, Xue X, Barlat F, et al. Material modelling and springback analysis for multistage rotary draw bending of thinwalled tube using homogeneous anisotropic hardening model
[J]. Procedia Engineering, 2014, 81: 1228-1233.


[12]Wagoner R H, Lim H, Lee M G. Advanced issues in springback
[J]. International Journal of Plasticity, 2013, 45(45):3-20.


[13]Lou Y, Huh H, Lim S, et al. New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals
[J]. International Journal of Solids & Structures, 2012, 49(25):3605-3615.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9