[1]胥锴,张书权,顾伟,等.环保易切削黄铜的发展现状及前景[J].上海有色金属,2008, 29(2):88-90.
Xu K, Zhang S Q, Gu W, et al. Present status and prospects of environmental protection type free cutting brass [J].Shanghai Nonferrous Metals, 2008, 29(2):88-90.
[2]王梦寒,危康,李小娟,等.高强锰黄铜高温热流变行为及本构方程的建立[J].Journal of Central South University,2018, 25(7):1560-1572.
Wang M H, Wei K, Li X J, et al. Constitutive modeling for high temperature flow behavior of a highstrength manganese brass [J]. Journal of Central South University, 2018, 25(7): 1560-1572.
[3]王梦寒,夏知姿,李雁召,等.锰黄铜合金高温变形及本构模型研究[J].热加工工艺,2016, 45(4):46-48.
Wang M H, Xia Z Z, Li Y Z, et al. Research on high temperature deformation and constitutive model of Mn brass alloy [J].Hot Working Technology,2016, 45(4):46-48.
[4]王文浩. 黄铜齿环精密锻造成形及模具磨损研究[D].重庆:重庆大学,2013.
Wang W H. Study on Precision Forging Process and Die Wear of Brass Synchronizer Ring [D].Chongqing: Chongqing University, 2013.
[5]王延辉,龚冰,李冰.H65黄铜合金热变形流变应力特征研究[J].塑性工程学报, 2008,15(6):113-117.
Wang Y H, Gong B, Li B. Flow stress of H65 brass alloy during hot compression deformation [J]. Journal of Materials Plasticity Engineering, 2008, 15(6):113-117.
[6]乔景振,田保红,张毅,等.Cu-7Ni-7Al-2Fe-2Mn-0.5Ti合金高温热变形行为[J].材料热处理学报, 2018, 39(3):131-135.
Qiao J Z, Tian B H, Zhang Y, et al. Hot deformation behavior of Cu-7Ni-7Al-2Fe-2Mn-0.5Ti alloy[J].Transaction of Materials and Heat Treatment,2018, 39(3):131-135.
[7]李建云. 硅黄铜热变形特征及组织演变规律的研究[D].赣州:江西理工大学,2014.
Li J Y. Research on Thermal Deformation Characteristics and Microstructure Evolution of Silicon Brass Alloy [D].Ganzhou:Jiangxi University of Science and Technology, 2014.
[8]Liu N, Li Z, Li L, et al. Processing map and hot deformation mechanism of novel nickelfree white copper alloy [J]. Transactions of Nonferrous Metals Society of China, 2014, 24(11):3492-3499.
[9]Wang Y, Zhou Y X, Xia Y M. A constitutive description of tensile behavior for brass over a wide range of strain rates [J]. Materials Science & Engineering A, 2004, 372(1):186-190.
[10]Lin Y C, Chen X M, Liu G. A modified Johnson-Cook model for tensile behaviors of typical highstrength alloy steel [J]. Materials Science & Engineering A, 2010, 527(26):6980-6986.
[11]Lin Y C, Chen M S, Zhang J. Modeling of flow stress of 42CrMo steel under hot compression [J]. Materials Science & Engineering: A (Structural Materials: Properties, Microstructure and Processing), 2009, 499(1-2):88-92.
[12]Tao Z J, Fan X G, Yang H, et al. A modified Johnson-Cook model for NC warm bending of large diameter thinwalled Ti-6Al-4V tube in wide ranges of strain rates and temperatures [J]. Transactions of Nonferrous Metals Society of China, 2018, 28(2):298-308.
[13]Zhao Y H, Sun J, Li J F, et al. A comparative study on JohnsonCook and modified JohnsonCook constitutive material model to predict the dynamic behavior laser additive manufacturing FeCr alloy [J]. Journal of Alloys and Compounds, 2017, 723:179-187.
[14]Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [J]. Engineering Fracture Mechanics, 1983, 21:541-548.
[15]叶建华, 陈明和, 王宁, 等. 基于修正JC模型的TA12钛合金高温流变行为[J]. 中国有色金属学报, 2019, 29(4):75-83.
Ye J H, Chen M H, Wang N, et al. Flow behavior of TA12 titanium alloy based on modified JC model at high temperature [J]. The Chinese Journal of Nonferrous Metals, 2019, 29(4):75-83.
|