网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
大变形热轧工艺对建筑用KK1铝青铜的组织与 力学性能的影响
英文标题:Influences of large deformation hot rolling process on microstructure and mechanical properties of KK1 aluminum bronze for construction
作者:秦春丽 张丹丹 符浩 保安青 
单位:1.郑州工业应用技术学院 建筑工程学院 2.郑州职业技术学院 城市轨道交通系 
关键词:铝青铜 热轧 组织结构 力学性能 时效处理 
分类号:TG146
出版年,卷(期):页码:2020,45(11):49-52
摘要:

 选择KK1铝青铜作为测试材料,分析合金经过大变形热轧与时效处理后发生的组织结构及力学性能的改变。研究结果表明:当热轧比例达到70%时,原有的等轴状α相与β相组织转变为尺寸非常细小的片层状结构,从而获得了非常细小的合金组织,经过热轧处理后,试样组织中形成了析出相;在380 ℃下,时效组织在片层状的细小β相间形成了模糊界面,模糊界面属于(α+β)相构成的双相片层组织。KK1铝青铜组织内均存在α相、β相,同时还有部分k相。经过热轧和时效处理的试样形成了相近的衍射峰,可见时效过程并不会改变铝青铜的组织结构。KK1铝青铜在热轧变形后,表面硬度明显增大,拉伸强度也增大至1095 MPa,各项性能均得到了改善。相比时效试样,热轧铝青铜达到了更高的应变硬化速率。

 For KK1 aluminum bronze, the changes of microstructure and mechanical properties for alloy after large deformation hot rolling and aging treatment were analyzed. The results show that when the proportion of hot rolling reaches 70%, the original isometric α and β phases are transformed into very fine lamellar structures to obtain very fine alloy structure. After hot rolling treatment, the precipitated phase is formed in the sample structure. Then, at the temperature of 380 ℃, the aging structure forms a fuzzy interface between lamellar and fine β phases, which belongs to double-phase layer structure composed of (α+β) phase. However, in the microstructure of KK1 aluminum bronze, there are α and β phases and some k phases, and after hot rolling and aging treatment, the sample forms a similar diffraction peak. Thus, the aging process cannot change the structure of aluminum bronze. Furthermore, after the hot rolling deformation of KK1 aluminum bronze, the surface hardness increases significantly, the tensile strength also increases to 1095 MPa, and all the properties are improved. Finally, compared with aged sample, the hot rolled aluminum bronze achieves a higher strain hardening rate.

基金项目:
国家自然科学基金资助项目(515092274)
作者简介:
秦春丽(1985-),女,硕士,讲师 E-mail:zhizihua2020@126.com
参考文献:

 [1]吕玉廷, 聂彬, 刘国浩, . 搅拌摩擦加工工具对镍铝青铜合金显微组织和机械性能的影响[J].表面技术, 2019, 48(12):102-107.


Lyu Y T, Nie B, Liu G H, et al. Effects of friction mixing tools on microstructure and mechanical properties of nickel-aluminum bronze alloy [J]. Surface Technology, 2019, 48 (12):102-107.


[2]孙晓峰, 陈正涵, 李占明, . 镍铝青铜合金及其冷喷涂涂层磨蚀行为[J].稀有金属材料与工程, 2018, 47(11):3493-3498.


Sun X F, Chen Z H, Li Z M, et al. Abrasion behavior of nickel-aluminum bronze alloy and its cold spraying coating [J]. Rare Metal Materials and Engineering, 2018, 47(11):3493-3498.


[3]Yang M, Yan D, Yuan F, et al. Dynamically reinforced heterogeneous grain structureprolongs ductility in a medium entropy alloy with gigapascal yield strength[J]. Proceedings of the National Academy of Sciences of United States of America, 2018, 115(28):7224-7229.


[4]陈正涵, 孙晓峰, 李占明, . 镍铝青铜基冷喷涂Cu402FCu涂层的力学性能[J].材料导报, 2018, 32(10):1618-1622.


Chen Z H, Sun X F, Li Z M, et al. Mechanical properties of nickel-aluminum bronze based cold spraying Cu402F and Cu coatings[J]. Materials Review, 2018, 32 (10):1618-1622.


[5]康全飞, 胡树兵, 曾思琪, . 船用螺旋桨材料镍铝青铜的热处理强化[J].中国有色金属学报, 2018, 28(1):107-115.


Kang Q F, Hu S B, Zeng S Q, et al. Heat treatment enhancement of marine propeller material nickel-aluminum bronze [J]. China Journal of Nonferrous Metals, 2018, 28 (1):107-115.


[6]张卫文, 谭伟, 罗宗强, . 铝青铜中组织与布氏硬度关系的定量金相分析[J]. 金属热处理, 2012, 37(9): 43-47.


Zhang W W, Tan W, Luo Z Q, et al. Quantitative metallographic analysis of the relationship between Brinell hardness and microstructure in aluminum bronze [J]. Metal Heat Treatment, 2012, 37(9):43-47.


[7]王智祥, 潘少彬, 叶艳君, . 固溶时效对热轧态QAl10.9-5-5合金组织及性能的影响[J]. 材料导报, 2016, 30(16): 82-85.


Wang Z X, Pan S B, Ye Y J, et al. Effect of solid solution aging on microstructure and properties of hot-rolled QAl10.9-5-5 alloy[J]. Materials Review, 2016, 30 (16):82-85.


[8]Menon S K, Pierce F A, Rosemark B P. Strengthening mechanisms in NiAl bronze: Hot deformation by rolling and friction-stir processing[J]. Metallurgical & Materials Transactions A, 2012, 43(10):3687-3702.


[9]赵欣, 单爱党. 大变形轧制制备细晶镍基合金的显微组织与拉伸性能[J]. 机械工程材料, 2017, 41(7): 76-79.


Zhao X, Shan A D. Microstructure and tensile properties of fine-grained nickel-based alloys prepared by large deformation rolling[J]. Materials for Mechanical Engineering, 2017, 41(7):76-79.


[10]Wu X, Yang M, Yuan F, et al. Heterogeneous lamella structure unites ultrafinegrain strength with coarse-grain ductility[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(47):14501-14505.


[11]Gupta R K, Ghosh B P, Sinha P P. Design of heat treatment cycle for hardness improvement of Cu-9Al-6Ni-5Fe alloy[J]. Canadian Metallurgical Quarterly, 2013, 45(3):353-358.


[12]Nestorovic S, Markovic D, Ivanic L. Influence of degree of deformation in rolling on anneal hardening effect of a cast copper alloy[J]. Bulletin of Materials Science, 2003, 26(6):601-604.


[13]李振亚, 杨丽景, 许赪, . 时效温度对镍铝青铜合金的硬质相演变的影响[J].中国有色金属学报, 2016, 26(4):766-772.


Li Z Y, Yang L J, Xu C, et al. Aging temperature on nickel-aluminum bronze alloy hard phase evolution[J]. The Influence of Chinese Journal of Nonferrous Metals, 2016, 26(4):766-772.


[14]Barr C J, Xia K. Significantly enhanced tensile strength and ductility in nickel aluminium bronze by equal channel angular pressing and subsequent heat treatment[J]. Journal of Materials Science, 2013, 48(13):4749-4757.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9