网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
铸态Q345E钢的本构方程及动态再结晶行为
英文标题:Constitutive equation and dynamic recrystallization behavior for as-cast Q345E steel
作者:孔晓寒 陈慧琴 刘建生 焦永星 李国栋 
单位:太原科技大学 材料科学与工程学院 
关键词:铸态Q345E钢 热变形行为 本构方程 动态再结晶 热模拟 
分类号:TG115.21;TG142.7
出版年,卷(期):页码:2020,45(11):199-204
摘要:

 以风电法兰用铸态Q345E钢为研究对象,利用Gleeble-1500D热模拟实验机,在变形温度为950~1250 ℃、应变速率为0.001~1 s-1、变形量为60%的条件下进行单道次热压缩实验,获得真应力–真应变曲线,并分析不同变形条件下该材料的热变形行为。结果表明:铸态Q345E钢在变形过程中,存在两种软化机制,变形温度小于1000 ℃、应变速率在0.001~1 s-1范围时,流动应力曲线均呈动态回复的软化特征;变形温度为1100 ℃及以上时,材料的主要软化机制为动态再结晶,且与发生动态再结晶的峰值应变相比,峰值应力对变形条件的改变更为敏感。基于Arrhenius双曲正弦函数,计算得出该材料的本构方程,求得其动态再结晶发生的临界应变,建立动态再结晶动力学模型。

 For as-cast Q345E steel used for manufacturing wind-power flanges, the single-pass thermal compression experiments were conducted by thermal simulation test machine Gleeble-1500D under the deformation temperatures of 950-1250 ℃, the strain rates of 0.001-1 s-1 and the deformation amount of 60%, and the true stress-true strain curves were obtained. Then, the thermal deformation behaviors of material under different deformation conditions were analyzed. The results show that the deformation process of as-cast Q345E steel includes two kinds of softening mechanisms. When the deformation temperature is less than 1000 ℃ and the strain rate is in the range of 0.001-1 s-1 , the flow stress curves show the softening characteristics of dynamic recovery. However, when the deformation temperature is 1100 ℃ or above, the main softening mechanism of material is dynamic recrystallization, and comparing with the peak strain at which the dynamic recrystallization occurs, the peak stress is more sensitive to changes in deformation conditions. Furthermore, according to the Arrhenius hyperbolic sine function, the constitutive equation of as-cast Q345E steel is constructed, the critical strain for dynamic recrystallization is determined, and the kinetic model of dynamic recrystallization is constructed.

基金项目:
国家自然科学基金资助项目(51775361)
作者简介:
孔晓寒(1993-),男,硕士研究生 E-mail:616526863@qq.com;通讯作者:陈慧琴(1968-),女,博士,教授 E-mail:chenhuiqin@tyust.edu.cn
参考文献:

 [1]张强,许少普,李忠波,. Q345E-Z35特厚板的研发[J]. 钢铁研究学报, 2015, 27(11):73-76.


Zhang Q, Xu S P, Li Z B, et al. Research and development of Q345E-Z35 extra-thick plate [J]. Journal of Iron and Steel Research, 2015, 27(11):73-76.


[2]李俊峰, 施鹏飞, 高虎. 中国风电产业发展现状与展望[J]. 电气时代, 2011,(3):36-41.


Li J F, Shi P F,Gao H. Development status and prospects of


wind power industry in China[J]. Electric Age, 2011,(3):36-41.


[3]张秀芝, 杨仁杰, 李佳,. 大型风电法兰用Q345E钢动态再结晶行为研究[J]. 大型铸锻件, 2016(1):13-17.


Zhang X Z, Yang R J, Li J, et al. Dynamic recrystallization behavior of Q345E steel for large wind power flanges [J]. Heavy Casting and Forging, 2016(1):13-17.


[4]Qian D S, Peng Y Y, Deng J D. Hot deformation behavior and constitutive modeling of Q345E alloy steel under hot compression[J]. Journal of Central South University, 2017, 24(2):284-295.


[5]王生朝, 张永青. Nb微合金钢Q345E热变形行为研究[J]. 特殊钢, 2005(6):35-37.


Wang S C, Zhang Y Q. Thermal deformation behavior of nbmicroalloy steel Q345E [J]. Special Steel, 2005(6):35-37.


[6]Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9):1136-1138.


[7]叶丽燕, 翟月雯, 周乐育, . 25Cr2Ni4MoV钢高温变形流变应力模型[J]. 锻压技术, 2019, 44(3): 144-148.


Ye L Y, Zhai Y W, Zhou L Y, et al. High temperature deformation rheological stress model of 25Cr2Ni4MoV steel [J]. Forging & Stamping Technology, 2019, 44(3): 144-148.


[8]Wang H T, Zhou C D, Ren T L, et al. The hot deformation behavior of as-cast austenitic stainless steel 1Mn18Cr18N[J]. Large Electric Machine & Hydraulic Turbine, 2014(5):31-34


[9]Prasad Y V R K, Rao K P, Gupta M. Hot workability and deformation mechanisms in Mg/nano-Al2O3 composite[J]. Composites Science & Technology, 2009, 69(7-8):1070-1076.


[10]Poliak E I, Jonas J J. Inaitiation of dynamic recrystalliztion inconstant strain rate hot deformation[J]. ISIJ Inter,2003, 43(5):684.


[11]何宜柱,陈大宏, 雷延权.动态再结晶动力学模型的研究[J]. 华东冶金学院学报,1995,122:146-150.


He Y Z, Chen D H, Lei Y Q. Study on dynamic recrystallization kinetic model [J]. Journal of East China Institute of Metallurgy, 1995,12 (2): 146-150.


[12]Sellars C M. Modelling microstructural development during hot rolling[J]. Materials Science and Technology, 1990, 6(11):1072-1081.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9