网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
双锥形构件旋压成形对组织与性能的影响
英文标题:Influence of spinning on microstructure and properties for double conical components
作者:杨文华 赵建斌 郝花蕾 崔旭昌 郝爱国 吉卫 
单位:中国工程物理研究院 
关键词:双锥形构件 多道次旋压 冲旋成形 贴模间隙 抗拉强度 
分类号:TG306
出版年,卷(期):页码:2020,45(9):130-136
摘要:

为了实现铝合金双锥形构件成形,提出采用多道次旋压和冲旋成形两种方法,并研究了两种方法对旋压件厚度及贴模间隙的影响规律,以及对不同部位的组织与性能的影响规律。结果表明:多道次旋压后的零件壁厚不均匀,且贴模间隙达到1 mm左右;冲旋成形后零件的壁厚均匀,且贴模间隙较小,仅为0.2 mm以下。经两种旋压方式成形后的试验件侧壁的抗拉强度为162~171 MPa,比原材料强度提高了27%~34%;口部的抗拉强度为133~149 MPa,比原材料强度提高了4.7%~17%。旋压后的组织分布不均匀,并且显微组织沿构件轴向和切向均发生了伸长。旋压之后,断口中韧窝的数量在不断减少,准解理平面不断增多,而且减薄率越大这种现象越明显。

In order to form aluminum alloy double conical components, two methods of multi-pass spinning and stamping and spinning were adopted. The influence laws of two methods on the thickness and the gap between part and die of spinning part, and on the microstructure and properties in different positions were studied. The results show that the wall thickness of parts is uneven and the gap between part and die is about 1 mm after multi-pass spinning, and the wall thickness is even and the gap between part and die is less than 0.2 mm after punching and spinning. However, the tensile strength of the side wall for the test piece formed by two spinning methods is 162-171 MPa, which is 27%-34% higher than that of the raw material, and the tensile strength of mouth part is 133-149 MPa, which is 4.7%-17% higher than that of the raw material. Furthermore, after spinning, the microstructure distribution is uneven, and the microstructure is extended along the axial and tangential directions of component. Thus, after spinning, the number of dimples in the fracture is constantly decreasing, the quasi-cleavage plane is constantly increasing, and the greater the thinning rate is, the more obvious this phenomenon is.

基金项目:
作者简介:
杨文华(1988-),男,硕士,工程师 E-mail:ywh060962@126.com
参考文献:


[1]赵小凯,徐文臣,陈宇, 等. TA15 钛合金筒-锥复合曲母线构件旋压成形工艺研究
[J]. 材料科学与工艺,2016, 24(4):10-17.


Zhao X K, Xu W C, Chen Y,et al. Study on the spinning process of cylinder-conical composite curved generatrix workpiece of TA15 titanium alloy
[J]. Materials Science and Technology,2016, 24(4):10-17.



[2]阴中炜,张绪虎,周晓建, 等. 大型薄壁铝合金半球壳体旋压成形工艺研究
[J]. 材料科学与工艺,2013,21(4):127-130.


Yin Z W, Zhang X H, Zhou X J,et al. The spinning process of large-scale thin-walled aluminum alloy hemisphere shell
[J]. Materials Science and Technology,2013,21(4):127-130.



[3]凌泽宇, 肖刚锋, 夏琴香, 等. 镍基高温合金锥筒形件拉深旋压成形机理研究
[J]. 锻压技术,2020,45(2):100-112.


Ling Z Y,Xiao G F,Xia Q X,et al. Research on deep drawing spinning forming mechanism of conical-cylindrical part of Ni-based superalloy
[J]. Forging & Stamping Technology,2020,45(2):100-112.



[4]吴统超, 詹梅, 古创国,等. 大型复杂薄壁壳体第一道次旋压成形质量分析
[J]. 材料科学与工艺, 2011, 19(1):121-126.


Wu T C, Zhan M, Gu C G,et al. Forming quality of the first pass spinning of large-sized complicated thin-walled shell
[J]. Materials Science and Technology,2011, 19(1):121-126.



[5]徐银丽, 詹梅, 杨合,等. 锥形件变薄旋压回弹的三维有限元分析
[J]. 材料科学与工艺, 2008,16(2):167-171.


Xu Y L, Zhan M, Yang H,et al. Spring back law analysis of cone spinning using 3D FEM
[J]. Materials Science and Technology,2008,16(2):167-171.



[6]詹梅, 李甜, 王巧玲,等. 热剪切旋压过程中芯模对零件形貌和壁厚分布的影响
[J]. 西北工业大学学报,2013, 31(3): 491-497.


Zhan M, Li T, Wang Q L,et al. Effects of mandrel on hot shear spinning of titanium alloy
[J]. Journal of Northwestern Polytechnical University,2013, 31(3): 491-497.



[7]李学雷,韩冬, 杨延涛,等. 高强铝合金7A52喷管锥段剪切旋压数值模拟研究
[J]. 锻压装备与制造技术,2017, 52(4):71-74.


Li X L, Han D, Yang Y T,et al. Numerical simulation study on shear spinning process for high strength aluminum alloy 7A52 nozzle cone
[J]. China Metalforming Equipment & Manufacturing Technology,2017, 52(4):71-74.



[8]陈永来,温涛,朱宏伟,等. 2195铝锂合金半球壳体旋压件制备与其组织性能研究
[J]. 航天制造技术,2019,2(1):17-21.


Chen Y L, Wen T, Zhu H W, et al. Study on microstructure and mechanical properties of 2195 Al-Li hemispherical shell formed by spinning
[J]. Aeronautical Manufacturing Technology,2019,2(1):17-21.



[9]韩冬, 杨合, 张立武, 等. 3A21铝合金热处理及旋压温度对其组织性能的影响
[J]. 固体火箭技术,2010,33(2): 225-228.


Han D, Yang H, Zhang L W, et al. Effects of heat treat ment and spinning temperature on microstructure & properties of 3A21 aluminium alloy
[J]. Journal of Solid Rocket Technology,2010,33(2): 225-228.



[10]杨文华,廖哲,郝花蕾,等. 3A21 铝合金锥形件旋压成形工艺
[J]. 锻压技术,2019,44(10):88-93.


Yang W H,Liao Z,Hao H L, et al. Spinning forming process of 3A21 aluminum alloy conical parts
[J]. Forging & Stamping Technology,2019,44(10):88-93.



[11]束学道, 岑泽伟, 王雨, 等. GH3030 高温合金壁厚渐变锥形回转件强力旋压成形仿真及机理分析
[J]. 西北工业大学学报,2019,37(4): 785-792.


Shu X D, Cen Z W, Wang Y, et al. Exploring strong spinning formation mechanisms of GH3030 superalloy tapered rotary part with wall thickness gradient
[J]. Journal of Northwestern Polytechnical University,2019,37(4): 785-792.



[12]刘丹丹. 退火处理对 3A21 铝合金组织和性能的影响
[J]. 热加工工艺,2016,45(20): 186-191.


Liu D D. Effect of annealing treatment on microstructure and properties of 3A21 Al alloy
[J]. Hot Working Technology,2016,45(20): 186-191.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9