网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
渐进成形工艺参数的分阶段扰动粒子群算法优化
英文标题:Optimization on incremental forming process parameters based on staged perturbation particle swarm algorithm
作者:徐伟 万轶 沙鑫美 
单位:三江学院 南京晓庄学院 
关键词:渐进成形 光滑度 减薄率 智能神经网络 分阶段扰动粒子群算法 正交实验 
分类号:TG386
出版年,卷(期):页码:2020,45(12):116-121
摘要:

为了降低渐进成形制件的减薄率、增加制件的光滑度,提出了基于分阶段扰动粒子群算法的参数优化方法。选择了渐进成形制件的减薄率作为优化目标,设计了4因素4水平正交实验。采用智能算法对BP神经网络参数进行训练,提出了智能神经网络的数值拟合方法。以制件减薄率均值和标准差最小为目标,建立了带约束的多目标优化模型。将精英粒子的多阶段扰动策略引入到粒子群算法中,平衡了算法的多样性和收敛性,深化了算法的优化能力,从而提出了分阶段扰动粒子群算法的模型求解方法。对成形角为37°圆台件的渐进成形参数进行了优化,分阶段扰动粒子群算法优化后的制件减薄率均值和标准差均小于粒子群算法,从而提高了制件的质量和光滑度。

In order to decrease the thinning rate of incremental formed part and increase the smoothness of part, the optimization method of parameters based on staged perturbation particle swarm algorithm was proposed, and taking the thinning rate of incremental formed part as optimization object, four-factor and four-level orthogonal experiment was designed. Then, BP neutral network parameters were trained by the intelligent algorithm, and the fitting method based on intelligent neutral network was put forward. Taking the minimum mean and the standard deviation of thinning rate of part as object, the multi-object optimization model with restriction was built. Furthermore, introducing elite particle staged perturbation strategy to particle swarm algorithm, the diversity and convergence of algorithm were balanced, and the optimizing ability of algorithm was deepened so that the model solving method based on staged perturbation particle swarm algorithm was proposed. Finally, the incremental forming parameters of circular table with the forming angle of 37°were optimized, and the mean and the standard deviation of thinning rate for part optimized by the staged perturbation particle swarm were smaller than those by the particle swarm algorithm. Thus, the quality and smoothness of part were improved.

基金项目:
江苏省高等学校自然科学研究项目(17KJB460011,19KJB460006)
作者简介:
徐伟(1982-),男,学士,高级实验师 E-mail:xwcontrol@163com 通讯作者:万轶(1982),女,博士,副教授 E-mail:379280626@163com
参考文献:


[1]王新太, 王进,顾宁,等. 渐进成形工艺参数对6061铝合金板材成形性能的影响
[J]. 锻压技术,2019,44(7):29-34.


Wang X T, Wang J, Gu N, et al. Effect of incremental forming process parameters on formability of 6061 aluminum alloy sheet
[J]. Forging & Stamping Technology, 2019,44(7):29-34.



[2]王华毕, 桑文刚, 魏目青. 金属板料单点渐进成形性能的研究
[J]. 机械设计与制造, 2017,(1):108-111.


Wang H B, Sang W G, Wei M Q. Research of sheet metal based on single point incremental formability
[J]. Machinery Design & Manufacture, 2017,(1):108-111.



[3]朱虎, 李吉龙.数控渐进成形中实验件几何参数对成形结果的影响
[J].锻压技术,2019,44(1):27-33.

Zhu H, Li J L. Influence of geometric parameters of experimental parts on forming results in CNC incremental forming
[J]. Forging & Stamping Technology, 2019,44(1):27-33.



[4]何正琛, 门正兴, 林盛, 等. 正十二边形锥件单点渐进成形工艺参数研究
[J]. 机床与液压, 2019,47(20):60-62.


He Z C, Men Z X, Lin S, et al. Study on process parameters of single-point progressive forming of regular dodecagonal conical parts
[J]. Machine Tool & Hydraulics, 2019,47(20):60-62.



[5]Salem E, Shin J, Nath M. Investigation of thickness variation in single point incremental forming
[J]. Procedia Manufacturing,2016,5:828-837.



[6]庞鹏辉. 铝合金板料有模单点渐进成形工艺数值模拟及优化
[D]. 重庆:重庆交通大学,2018.


Pang P H. Numerical Simulation and Optimization of Single Point Incremental Forming Process for Aluminum Alloy Sheets
[D]. Chongqing: Chongqing Jiaotong University, 2018.



[7]施文强, 高锦张. 1060铝板凸曲台件外轮廓支撑渐进成形壁厚均匀临界角研究
[J]. 锻压技术, 2019,44(9):27-33.


Shi W Q, Gao J Z. Research on critical angle of uniform wall thickness in incremental forming with outer contour support for convex curved part of 1060 aluminum sheet
[J]. Forging & Stamping Technology, 2019,44(9):27-33.



[8]毛志翔, 鲁世红, 李正芳, 等. 电加热渐进成形工艺参数优化及成形温度预测
[J]. 热加工工艺, 2019,48(19):100-103.


Mao Z X, Lu S H, Li Z F, et al. Optimization of process parameters and prediction of forming temperature for electro-heating incremental forming
[J]. Hot Working Technology, 2019,48(19):100-103.



[9]安治国, 李红梅, 郭敬谊, 等. 多道次单点渐进成形工艺参数优化研究
[J]. 铸造技术, 2018,39(3):628-632.


An Z G, Li H M, Guo J Y, et al. Pass laws and optimization on process parameters in multi-pass single point incremental forming
[J]. Foundry Technology, 2018,39(3):628-632.



[10]赵桂清. BP神经网络信息融合的汽车载重测量方案
[J]. 机械设计与制造, 2017,(12):140-143.


Zhao G Q. Carload measuring project based on BP neural network information fusion
[J]. Machinery Design & Manufacture, 2017,(12):140-143.



[11]王玉槐, 王李冬, 勾治践, 等. 基于改进蚁群算法的渐进成形工艺参数优化
[J]. 锻压技术, 2018,43(10):57-62.


Wang Y H, Wang L D, Gou Z J, et al. Optimization on process parameters in the incremental forming based on improved ant colony algorithm
[J]. Forging & Stamping Technology, 2018,43(10):57-62.



[12]Bonyadi M R, Michalewicz Z. Particle swarm optimization for single objective continuous space problems: A review
[J]. Evolutionary Computation, 2017, 25(1):1-54.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9