网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
退火温度对拉拔Cu-14Fe合金微观组织和性能的影响
英文标题:Influence of annealing temperature on microstructure and properties for drawn Cu-14Fe alloy
作者:郭炜  谌昀  姜江  陈威  陆德平  刘克明  徐萌利 
单位:江西省科学院 南昌工程学院 江西广播电视大学 
关键词:Cu-14Fe合金 拉拔 显微组织 力学性能 导电性能 
分类号:TG166;TG359
出版年,卷(期):页码:2020,45(12):191-194
摘要:

为了研究拉拔制备的Cu-Fe合金的微观组织、探讨退火温度对合金性能的影响规律,对真空熔炼制备的Cu-14Fe合金,采用不同的应变量进行拉拔加工,并在不同温度的退火处理后,采用光学显微镜、电子万能试验机、数字式微欧计研究了合金的微观组织、力学性能和导电性能。结果表明:拉拔变形使合金中的第二相分布由铸态时的随机树枝形态转变为沿拉拔方向的纤维形态,加工应变量越高,纤维形态的第二相越细长,在铜基体中的分布越均匀;拉拔态合金的抗拉强度为618 MPa,伸长率为21%,在200 ℃退火后,抗拉强度和伸长率变化不显著,随着退火温度逐渐升高至550 ℃,合金的抗拉强度逐渐降低至416 MPa,伸长率逐渐提高至199%;随着退火温度逐渐升高,合金的电阻率不断降低。

In order to study the microstructure of Cu-Fe alloy prepared by drawing and explore the influence law of annealing temperature on the properties of alloy, for Cu-14Fe alloy prepared by means of vacuum melting, the drawing process was conducted with different strains,and the microstructure, mechanical properties and conductivity of the alloy were studied by optical microscope, electronic universal testing machine and digital microhmmeter after annealing treatment at different temperatures. The results show that the drawing deformation makes the distribution of the second phase in the alloy to change from random dendritic morphology in as-cast state to the fiber morphology along the drawing direction. The bigger the processing strain is, the longer the second phase with fiber morphology is, and the more uniform the distribution in Cu matrix is. Furthermore, the tensile strength of the as-drawn alloy is 618 MPa, and the elongation is 21%. When the alloy is annealed at 200 ℃, the tensile strength and elongation change insignificantly. However, as the annealing temperature increases to 550 ℃, the tensile strength gradually decreases to 416 MPa, and the elongation increases to 199%. With the increasing of annealing temperature, the resistivity of alloy gradually decreases.

基金项目:
江西省重点研发计划(20202BBEL53026, 20202ZDH02063);国家自然科学基金资助项目(51861025);江西省自然科学基金资助项目(20192BAB206001);江西省科学院重点科研项目(2020-YZD-2, 2017-YZD2-20)
作者简介:
郭炜(1981-),男,博士,副研究员 E-mail:guowei66@sohucom
参考文献:


[1]毕彦, 乔靖雯, 马叙, 等. Cu-Cr-Zr合金大功率电动机转子端环的锻造性能分析
[J]. 锻压技术, 2018, 43(9): 14-20.


Bi Y, Qiao J W, Ma X, et al. Forging formability analysis on Cu-Cr-Zr rotor end ring of high power motor
[J]. Forging & Stamping Technology, 2018, 43(9): 14-20.



[2]梁明, 王鹏飞, 徐晓燕, 等. 高强高导Cu-Nb微观复合材料热稳定性
[J]. 稀有金属材料与工程, 2017, 46(2): 382-386.


Liang M, Wang P F, Xu X Y, et al. Thermal stability of high strength and high conductivity Cu-Nb microcomposites
[J]. Rare Metal Materials and Engineering, 2017, 46(2): 382-386.



[3]Wei K X, Wei W, Wang F, et al. Microstructure, mechanical properties and electrical conductivity of industrial Cu-05%Cr alloy processed by severe plastic deformation
[J]. Materials Science and Engineering A, 2011, 528: 1478-1484.



[4]蔡薇, 高鹏哲, 陈辉明, 等. Cu-Cr-Zr-Ti合金高温热变形行为及热加工图
[J]. 金属热处理, 2019, 44(8): 147-154.


Cai W, Gao P Z, Chen H M, et al. High temperature deformation behavior and hot processing map of Cu-Cr-Zr-Ti alloy
[J]. Heat Treatment of Metals, 2019, 44(8): 147-154.



[5]Xia C D, Zhang W, Kang Z Y, et al. High strength and high electrical conductivity Cu-Cr system alloys manufactured by hot rolling-quenching process and thermomechanical treatments
[J]. Materials Science and Engineering A, 2012, 538: 295-301.



[6]Rozhnov A B, Pantsyrny V I, Kraynev A V, et al. Low-cycle bending fatigue and electrical conductivity of high-strength Cu/Nb nanocomposite wires
[J]. International Journal of Fatigue, 2019, 128: 1-8.



[7]王鹏飞, 梁明, 徐晓燕, 等. Cu-Nb多芯复合材料的研究
[J]. 材料导报, 2013, 27(21): 25-30.


Wang P F, Liang M, Xu X Y, et al. Research in Cu-Nb Composites with multi-filaments
[J]. Materials Reports, 2013, 27(21): 25-30.



[8]Zhang B B, Tao N R, Lu K. A high strength and high electrical conductivity bulk Cu-Ag alloy strengthened with nanotwins
[J]. Scripta Materialia, 2017, 1291: 39-43.



[9]李明茂, 张乐清, 王文静. 微量铪对铜及铜铬合金组织及性能的影响
[J]. 金属热处理, 2018,43(8): 23-30.


Li M M, Zhang L Q, Wang W J. Effect of trace hafnium on microstructure and properties of Cu and Cu-Cr alloys
[J]. Heat Treatment of Metals, 2018,43(8): 23-30.



[10]Liu K M, Lu D P, Zhou H T, et al. Influence of a high magnetic field on the microstructure and properties of a Cu-Fe-Ag in situ composite
[J]. Materials Science and Engineering A, 2013, 584:114-120.



[11]尹志民, 宋练鹏, 袁远. 不同处理状态下Cu-25Fe-003P合金的组织与性能演变
[J]. 中国有色金属学报, 2009, 19(11): 1969-1975.


Yin Z M, Song L P, Yuan Y. Structure and properties evolution of Cu-25Fe-003P alloy under different treatment conditions
[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(11): 1969-1975.



[12]Li Y, Yi D Q, Zhang J B. Comparative study of the influence of Ag on the microstructure and mechanical properties of Cu-10Fe in situ composites
[J]. Journal of Alloys and Compounds, 2015, 647: 413-418.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9