[1]毕彦, 乔靖雯, 马叙, 等. Cu-Cr-Zr合金大功率电动机转子端环的锻造性能分析 [J]. 锻压技术, 2018, 43(9): 14-20.
Bi Y, Qiao J W, Ma X, et al. Forging formability analysis on Cu-Cr-Zr rotor end ring of high power motor [J]. Forging & Stamping Technology, 2018, 43(9): 14-20.
[2]梁明, 王鹏飞, 徐晓燕, 等. 高强高导Cu-Nb微观复合材料热稳定性 [J]. 稀有金属材料与工程, 2017, 46(2): 382-386.
Liang M, Wang P F, Xu X Y, et al. Thermal stability of high strength and high conductivity Cu-Nb microcomposites [J]. Rare Metal Materials and Engineering, 2017, 46(2): 382-386.
[3]Wei K X, Wei W, Wang F, et al. Microstructure, mechanical properties and electrical conductivity of industrial Cu-05%Cr alloy processed by severe plastic deformation [J]. Materials Science and Engineering A, 2011, 528: 1478-1484.
[4]蔡薇, 高鹏哲, 陈辉明, 等. Cu-Cr-Zr-Ti合金高温热变形行为及热加工图 [J]. 金属热处理, 2019, 44(8): 147-154.
Cai W, Gao P Z, Chen H M, et al. High temperature deformation behavior and hot processing map of Cu-Cr-Zr-Ti alloy [J]. Heat Treatment of Metals, 2019, 44(8): 147-154.
[5]Xia C D, Zhang W, Kang Z Y, et al. High strength and high electrical conductivity Cu-Cr system alloys manufactured by hot rolling-quenching process and thermomechanical treatments [J]. Materials Science and Engineering A, 2012, 538: 295-301.
[6]Rozhnov A B, Pantsyrny V I, Kraynev A V, et al. Low-cycle bending fatigue and electrical conductivity of high-strength Cu/Nb nanocomposite wires [J]. International Journal of Fatigue, 2019, 128: 1-8.
[7]王鹏飞, 梁明, 徐晓燕, 等. Cu-Nb多芯复合材料的研究 [J]. 材料导报, 2013, 27(21): 25-30.
Wang P F, Liang M, Xu X Y, et al. Research in Cu-Nb Composites with multi-filaments [J]. Materials Reports, 2013, 27(21): 25-30.
[8]Zhang B B, Tao N R, Lu K. A high strength and high electrical conductivity bulk Cu-Ag alloy strengthened with nanotwins [J]. Scripta Materialia, 2017, 1291: 39-43.
[9]李明茂, 张乐清, 王文静. 微量铪对铜及铜铬合金组织及性能的影响 [J]. 金属热处理, 2018,43(8): 23-30.
Li M M, Zhang L Q, Wang W J. Effect of trace hafnium on microstructure and properties of Cu and Cu-Cr alloys [J]. Heat Treatment of Metals, 2018,43(8): 23-30.
[10]Liu K M, Lu D P, Zhou H T, et al. Influence of a high magnetic field on the microstructure and properties of a Cu-Fe-Ag in situ composite [J]. Materials Science and Engineering A, 2013, 584:114-120.
[11]尹志民, 宋练鹏, 袁远. 不同处理状态下Cu-25Fe-003P合金的组织与性能演变 [J]. 中国有色金属学报, 2009, 19(11): 1969-1975.
Yin Z M, Song L P, Yuan Y. Structure and properties evolution of Cu-25Fe-003P alloy under different treatment conditions [J]. The Chinese Journal of Nonferrous Metals, 2009, 19(11): 1969-1975.
[12]Li Y, Yi D Q, Zhang J B. Comparative study of the influence of Ag on the microstructure and mechanical properties of Cu-10Fe in situ composites [J]. Journal of Alloys and Compounds, 2015, 647: 413-418.
|