[1]董梁. 高强钢板材剪切边缘局部成形性能表征与开裂预测研究[D].上海:上海交通大学,2017.
Dong L. Characterization on Local Formbility of Sheared Edge and Prediction of Edge Cracking for High Strength Steel Sheet[D]. Shanghai: Shanghai Jiao Tong University, 2017.
[2]Gurson A L. Continuum theory of ductile rupture by void nucleation and growth: Part I yield criteria and flow rules for porous ductile media [J]. Journal of Engineering Materials and Technology, 1977, 99(1): 2-15.
[3]Tvergaard V, Needleman A. Analysis of the cupcone fracture in a round tensile bar[J]. Acta Metallurgica, 1984, 32(1):157-169.
[4]Besson J, Steglich D, Brocks W. Modeling of crack growth in round bars and plane strain specimens[J]. International Journal of Solids and Structures, 2001, 38(46-47): 8529-8584.
[5]Xue L. Constitutive modeling of void shearing effect in ductile fracture of porous materials[J]. Engineering Fracture Mechanics, 2008, 75(11): 3343-3366.
[6]Butcher C, Chen Z, Bardelcik A, et al. Damagebased finiteelement modeling of tube hydroforming[J]. Int. J. Fract., 2009, 155, 55-65.
[7]Lemaitre J. A continuous damage mechanics model for ductile fracture [J]. Journal of Engineering Materials and Technology, 1985, 107(1): 83-89.
[8]Chow C L, Wang J. An anisotropic theory of continuum damage mechanics for ductile fracture[J]. Engineering Fracture Mechanics,1987, 27(5): 547-558.
[9]Lian J H, Feng Y, Sebastian Münstermann. A modified Lemaitre damage model phenomenologically accounting for the Lode angle effect on ductile fracture[J]. Procedia Materials Science, 2014, 3: 1841-1847.
[10]Cao T S, Gachet J M, Montmitonnet P, et al. A Lodedependent enhanced Lemaitre model for ductile fracture prediction at low stress triaxiality[J]. Engineering Fracture Mechanics, 2014, 124-125: 80-96.
[11]Yue Z, Cao K, Badreddine H. Failure prediction on steel sheet under different loading paths based on fully coupled ductile damage model[J]. International Journal of Mechanical Sciences, 2019, 153-154: 1-9.
[12]Rousselier G. Ductile fracture models and their potential in local approach of fracture[J]. Nuclear engineering and design, 1987,105(1): 97-111.
[13]McClintock F A. A criterion for ductile fracture by the growth of holes [J]. Journal of Applied Mechanics, 1968, 35(2): 363-371.
[14]Cockcroft M G, Latham D J. Ductility and the workability of metals[J]. Journal of the Institute of Metals, 1968, 96: 33-39.
[15]Rice J R, Tracey D M. On the ductile enlargement of voids in triaxial stress fields [J]. Journal of the Mechanics and Physics of Solids, 1969, 17: 201-217.
[16]Brozzo P, Deluca B, Rendina R. A new method for the prediction of formability limits of metal sheets, sheet metal forming and formability[A]. Proceedings of the Seventh Biennial Congress of International Deep Drawing Research Group[C]. Netherlands,1972.
[17]Oh S I, Chen C C, Kobayashi S. Ductile fracture in axisymmetric extrusion and drawing: Part 2, workability in extrusion and drawing[J]. J. Eng. Ind., 1979, 101: 36-44.
[18]Oyane M, Sato T, Okimoto K, et al. Criteria for ductile fracture and their applications[J]. Journal of Mechanical Working Technology, 1980,4(1): 65-81.
[19]Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and press ures [J].Engineering Fracture Mechanics, 1985, 21(1): 31-48.
[20]Bao Y, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space [J]. International Journal of Mechanical Sciences, 2004, 46(1): 81-98.
[21]Zhang K S, Bai J B, Francois D. Numerical analysis of the influence of the Lode parameter on void growth[J]. International Journal of Solids and Structures, 2001, 38(32-33): 5847-5856.
[22]Xue L, Wierzbicki T. Ductile fracture initiation and propagation modeling using damage plasticity theory[J]. Engineering Fracture Mechanics,2008, 75(11): 3276-3293.
[23]Bai Y, Wierzbicki T. A new model of metal plasticity and fracture with pressure and Lode dependence[J]. International Journal of Plasticity, 2008, 24(6): 1071-1096 .
[24]Lian J, Wu J, Münstermann S. Evaluation of the cold formability of highstrength lowalloy steel plates with the modified BaiWierzbicki damage model[J]. International Journal of Damage Mechanics, 2015, 24(3): 383-417.
[25]Bai Y, Wierzbicki T. Application of extended MohrCoulomb criterion to ductile fracture[J]. International Journal of Fracture, 2010, 161: 1-20.
[26]Mohr D, Marcadet S. Micromechanicallymotivated phenomenological HosfordCoulomb model for predicting ductile fracture initiation at low stress triaxialities[J]. International Journal of Solids and Structures, 2015, (67-68): 40-55.
[27]Lou Y S, Huh H, Lim S J, et al. New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals[J]. International Journal of Solids and Structures, 2012, 49(25): 3605-3615.
[28]Lou Y S, Yoon J W, Huh H. Modeling of shear ductile fracture considering a changeable cutoff value for stress triaxiality[J]. International Journal of Plasticity, 2014, 54: 56-80.
[29]Lou Y S, Yoon J W. Anisotropic ductile fracture criterion based on linear transformation[J]. International Journal of Plasticity, 2017, 93: 3-25.
[30]穆磊. 面向先进高强钢的韧性断裂预测模型研究与应用[D]. 北京:北京科技大学, 2018.
Mu L. Study on A Ductile Fracture Prediction Model for Advanced High Strength Steel and Its Application[D]. Beijing:University of Science and Technology Beijing, 2018.
[31]Gu B, He J, Li S H, et al. Anisotropic fracture modeling of sheet metals: From inplane to outofplane[J]. International Journal of Solids and Structures, 2020, 182-183: 112-140.
[32]Li S H, He J, Gu B, et al. Anisotropic fracture of advanced high strength steel sheets: experiment and theory[J]. International Journal of Plasticity, 2018, 103: 95-118.
[33]Soyarslan C, Malekipour Gharbi M, Tekkaya A E. A combined experimentalnumerical investigation of ductile fracture in bending of a class of ferriticmartensitic steel[J]. International Journal of Solids and Structures, 2012, 49(13): 1608-1626.
[34]Pathak N, Butcher C, Adrien J, et al. Micromechanical modelling of edge failure in 800 MPa advanced high strength steels[J]. Journal of the Mechanics and Physics of Solids, 2020, 137: 1-36.
[35]Sebastian M, Peerapon W, Liu W, et al. Surface roughness influences on localization and damage during forming of DP1000 sheet steel[J]. Procedia Manufacturing, 2019, 29: 504-511.
[36]Sarraf I S, Green D E, Vasilescu D M, et al. Numerical analysis of damage evolution and formability of DP600 sheet with an extended Rousselier damage model[J]. International Journal of Solids and Structures, 2018, 134: 70-88.
[37]Habibi N, Ramazani A, Veera Sundararaghavan, et al. Failure predictions of DP600 steel sheets using various uncoupled fracture criteria[J]. Engineering Fracture Mechanics, 2018, 190(1): 367-381.
[38]Qin S P, Lu Y F, Susan B Sinnott, et al. Influence of phase and interface properties on the stress state dependent fracture initiation behavior in DP steels through computational modeling[J]. Materials Science and Engineering, 2020, 776: 1-8.
[39]黄志强. 双相钢车身板的韧性断裂失效判据研究[D]. 淄博: 山东理工大学, 2018.
Huang Z Q. The Study on Ductile Fracture Failure Criterion of Dual Phase Steels Body Panel[D]. Zibo: Shandong University of Technology,2018.
[40]Park N, Huh H, Lim S J, et al. Fracturebased forming limit criteria for anisotropic materials in sheet metal forming[J]. International Journal of Plasticity, 2017, 96: 1-35.
[41]Cheng C, Meng B, Han J Q, et al. A modified LouHuh model for characterization of ductile fracture of DP590 sheet[J]. Materials & Design, 2017, 118(15): 89-98.
[42]Liu W Q, Lian J H, Sebastian Münstermann. Damage mechanism analysis of a highstrength dualphase steel sheet with optimized fracture samples for various stress states and loading rates[J]. Engineering Failure Analysis, 2019, 106: 1-23.
[43]Darabi A C, Guski V, Butz A, et al. A comparative study on mechanical behavior and damage scenario of DP600 and DP980 steels[J]. Mechanics of Materials, 2020, 143: 1-24.
[44]Li X Y, Christian C Roth, Dirk Mohr. Machinelearning based temperature and ratedependent plasticity model: Application to analysis of fracture experiments on DP steel[J]. International Journal of Plasticity, 2019, 118: 320-344.
[45]杨信. 高强钢TRB盒形件热冲压成形极限预测研究[D]. 哈尔滨:哈尔滨工业大学, 2017.
[46]Sarraf I S, Jenab A, Boyle K P, et al. Effect of ratedependent constitutive equations on the tensile flow behavior of DP600 using Rousselier damage model[J]. Materials & Design, 2017, 117(5): 267-279.
[47]Chiyatan T, Uthaisangsu V. Mechanical and fracture behavior of high strength steels under high strain rate deformation: Experiments and modelling[J]. Materials Science and Engineering, 2020, 779(27): 1-19.
[48]郭玉琴, 王帅, 朱新峰, 等. B340/590DP钢温热成形破裂准则提出及成形极限预测[J]. 塑性工程学报, 2015, 22(3): 38-43.
Guo Y Q, Wang S, Zhu X F, et al. Proposal of warm forming fracture criterion and forming limit prediction of B340/590DP steel[J]. Journal of Plasticity Engineering, 2015, 22(3): 38-43.
[49]Christian C Roth, Mohr D. Effect of strain rate on ductile fracture initiation in advanced high strength steel sheets: Experiments and modeling[J]. International Journal of Plasticity, 2014, 56: 19-44.
[50]Erice B, Christian C. Roth, Mohr D. Stressstate and strainrate dependent ductile fracture of dual and complex phase steel[J]. Mechanics of Materials, 2018, 116: 11-32.
[51]蒲世翱. 超高强度钢板热变形动态损伤劣化评价模型及成形极限预测[D]. 重庆:重庆大学, 2016.
Pu S A. Ultrahigh Strength Steel Plate Thermal Deformation Dynamic Damage Degradation Assessment Model and Forming Limit Prediction[D].Chongqing: Chongqing University, 2016.
[52]Santos R O, Silveira L B, Moreira L P, et al. Damage identification parameters of dualphase 600-800 steels based on experimental void analysis and finite element simulations[J]. Journal of Materials Research and Technology, 2019, 8(1): 644-659.
[53]刘倩, 刘嘉庚, 韩静涛, 等. 冷轧钢单拉本构关系与韧性断裂参数研究[J]. 塑性工程学报, 2019, 26(1):162-167.
Liu Q, Liu J G, Han J T, et al. Uniaxial tensile constitutive relationship of cold rolling steel and ductile fracture parameter[J]. Journal of Plasticity Engineering, 2019, 26(1):162-167.
[54]Djouabi M, Ati A, Manach P Y. Identification strategy influence of elastoplastic behavior law parameters on GursonTvergaardNeedleman damage parameters: Application to DP980 steel[J]. International Journal of Damage Mechanics, 2019, 28(3): 427-454.
|