网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于Vague集的强力旋压工艺参数优化
英文标题:Optimization on power spinning process parameters based on Vague set
作者:杨锋 朱小兵 钟茵 肖晓青 何敏 
单位:上海新力动力设备研究所 
关键词:Vague集 强力旋压 成形质量 正交试验 ABAQUS 
分类号:TG376
出版年,卷(期):页码:2021,46(1):110-115
摘要:

 在ABAQUS有限元软件中进行30Cr3钢的强力旋压仿真试验,将Vague集引入正交试验进行工艺参数优化,选择旋轮工作角、旋轮直径、旋轮工作圆弧半径、进给比、轴向错距、芯模转速作为优化工艺参数,设计6水平5因素的正交试验,以旋压件的回弹量与最大残余应力作为评价指标,得到最优的工艺参数组合以及各工艺参数对评价指标的影响顺序。结果表明:旋轮工作角为25°、旋轮直径为Φ185 mm、旋轮工作圆弧半径为9.5 mm、进给比为0.5 mm·r-1、轴向错距为2 mm、芯模转速为60 r·min-1时,旋压件的成形质量较高;各工艺因素对旋压件成形质量的影响顺序为:进给比>旋轮工作角>旋轮直径>旋轮工作圆弧半径>轴向错距>芯模转速。对仿真结果进行试验验证,相对误差小于7%,证明仿真结果具有良好的可靠性,可对实际生产提供理论指导。

 The power spinning simulation test of 30Cr3 steel was conducted by finite element software ABAQUS, and the process parameters were optimized by introducing Vague set the orthogonal test. Then, taking roller working angle、roller diameter、roller working arc radius, feeding ratio, axial offset, mandrel rotate speed were selected as the optimized process parameters, the orthogonal test of six levels and five factors was designed, and taking the springback amount and the maximum residual stress of spinning part as the evaluation indexes, the optimal combination of process parameters and the influence order of various process parameters on the evaluation indexes were obtained. The results show that the forming quality of spinning part is higher with the roller working angle of 25°, the roller diameter of 185 mm, the roller working arc radius of 9.5 mm, the feeding ratio of 0.5 mm·r-1, the axial offset of 2 mm and the mandrel rotate speed of 60 r·min-1, and the influence order of various process parameters on the forming quality of spinning part is feeding ratio>roller working angle>roller diameter>roll working arc radius>axial offset>mandrel rotate speed. In addition, the simulation results were tested and verified, and the relative error was less than 7%. Thus, it is proved that the simulation results have good reliability and provide theoretical guidance for practical production.

基金项目:
作者简介:
作者简介:杨锋(1993-),男,硕士,助理工程师 E-mail:122297706@qq.com
参考文献:

 [1]寸文渊, 张晶, 崔保金, 等. 基于CAE的导管精确扩口成形技术[J]. 锻压技术, 2020, 45(10); 73-79. 


Cun W Y, Zhang J, Cui B J, et al. Precise flaring forming technology of catheter based on CAE[J]. Forging & Stamping Technology, 2020, 45(10); 73-79.

[2]杨文华, 廖哲, 郝花蕾, 等. 3A21铝合金锥形件旋压成形工艺[J]. 锻压技术, 2019, 34(10); 88-94. 

Yang W H, Liao Z, Hao H L, et al. Spinning forming process of 3A21 aluminum alloy conical parts [J]. Forging & Stamping Technology, 2019, 34(10); 88-94.

[3]王大力, 郭亚明, 李亦楠, 等. 大型薄壁筒形件对轮旋压成形数值模拟及成形精度分析[J]. 锻压技术, 2020, 45(3); 47-54. 

Wang D L, Guo Y M, Li Y N, et al. Numerical simulation and forming precision analysis on counterroller spinning for large thinwalled cylindrical parts [J]. Forging & Stamping Technology, 2020, 45(3); 47-54.

[4]陈实. 筒形件强力旋压成形关键参数对成形质量影响分析及其优化[D]. 杭州: 浙江大学, 2015. 

Chen S. The Analysis and Optimization of Key Parameters in Tube Spinning Process[D]. Hangzhou: Zhejiang University, 2015.

[5]詹梅, 石丰, 邓强, 等. 铝合金波纹管无芯模缩径旋压成形机理与规律[J]. 塑性工程学报, 2014, 21(2): 108-113.

Zhan M, Shi F, Deng Q, et al. Forming mechanism and rules of mandreless neckspinning on corrugated pipes[J]. Journal of Plasticity Engineering, 2014,21(2):108-113.

[6]曹振. AZ80镁合金强力旋压成形工艺研究[D]. 上海: 上海交通大学大学, 2015. 

Cao Z. Study on the Power Spinning Process of AZ80 Magnesium Alloy [D]. Shanghai: Shanghai Jiao Tong University, 2015.

[7]孔维静, 樊文欣, 席奇豪, 等. 减薄率对QSn7-0.2合金微观组织的影响[J]. 塑性工程学报, 2018, 25(5): 223-227.

Kong W J, Fan W X, Xi Q H, et al. Effect of thinning rate on microstructure of QSn7-0.2 alloy [J]. Journal of Plasticity Engineering, 2018, 25(5): 223-227.

[8]袁玉军. 薄壁件精密旋压成形方法及缺陷控制研究[D]. 广州: 华南理工大学, 2013. 

Yuan Y J. Research on the Thinwalled Workpieces Forming Method and Defect Controlling of the Accurate Spinning [D]. Guangzhou: South China University of Technology, 2013.

[9]田晓麟, 王树松, 余宁, 等.回火温度对30Cr3SiNiMoVA钢形变热处理组织和性能影响[J]. 材料热处理学报, 2013, 34(12): 136-140.

Tian X L, Wang S S, Yu N, et al. Influence of tempering temperature on microstructure and properties of steel 30Cr3SiNiMoVA in thermomechanical processing [J]. Transactions of Materials and Heat Treatment, 2013, 34(12): 136-140.

[10]杨锋, 樊文欣, 李涵, 等. 基于ABAQUS连杆衬套强力旋压残余应力研究[J]. 塑性工程学报, 2018, 25(3): 96-101.

Yang F, Fan W X, Li H, et al. ABAQUS based residual stress analysis of connecting rod bushing in power spinning [J]. Journal of Plasticity Engineering, 2018, 25(3): 96-101.

[11]何新贵. 模糊知识处理的理论与技术[M]. 北京:国防工业出版社,1994.

He X G. Theory and Technology of Fuzzy Knowledge Processing [M]. Beijing:National Defense Industry Press, 1994.

[12]王鸿绪. 单值数据转化为Vague值数据的定义和转化公式[J]. 计算机工程与应用, 2010, 46(24); 42-44.

Wang H X. Definition and transforming formulas from single valued data to Vague valued data[J]. Computer Engineering and Applications, 2010, 46(24): 42-44.

[13]舒服华. Vague集在ZL201消失模铸造工艺参数优化中的应用[J]. 铸造, 2017, 66(2): 161-164.

Shu F H. Optimization of process parameters for ZL201 lost foam casting based on Vague set[J]. Foundry, 2017, 66(2): 161-164.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9