网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
铸态ER8车轮钢的热变形行为及本构模型研究
英文标题:Study on hot deformation behavior and constitutive model of ascast ER8 wheel steel
作者:任劲宇 陈飞 张晓峰 陈慧琴 贾晓斌 赵晓东 
单位:太原科技大学 太原重工轨道交通设备有限公司 
关键词:铸态ER8车轮钢 热变形 本构模型 变形温度 应变速率 
分类号:TG314
出版年,卷(期):页码:2021,46(1):202-207
摘要:

 采用Gleeble-1500D热模拟试验机,在变形温度为900~1250 ℃、应变速率为0.001~1 s-1的条件下对铸态ER8车轮钢进行热压缩试验,得到真应力-真应变曲线。结果发现:其真应力-真应变曲线符合动态再结晶型软化机制,变形初始阶段,材料发生硬化,真应力快速增加,随着变形的继续,材料发生动态回复,加工硬化速率减缓;在材料变形过程中,材料畸变的应变储存能增加,动态再结晶激活,真应力迅速降低,后硬化及软化达到动态平衡。并分析了变形温度和应变速率对该材料高温下真应力的影响,发现真应力的大小随着变形温度的升高及应变速率的降低而减小。通过对试验数据的归纳整理得出,铸态ER8车轮钢的热变形激活能为258.4 kJ·mol-1。建立了Arrhenius双曲正弦本构方程,用作图法求解加工硬化速率,找出峰值应变及临界应变,基于此建立动态再结晶体积分数模型。其能精准地预测此材料的高温软化行为,为有限元数值模拟提供了理论基础。

 The hot compression experiment of as-cast ER8 wheel steel under deformation temperature of 900-1250 ℃ and strain rate of 0.001-1 s-1 was conducted by Gleeble-1500D thermal simulation testing machine, and the true stress-true strain curve was obtained. The results show that the true stress-true strain curve conforms to the dynamic recrystallization softening mechanism. At the initial stage of deformation, the hardening of material occurs, and the true stress increases rapidly. However, as the deformation continues, the dynamic recovery of material occurs, and the work hardening rate slows down. Furthermore, in the material deformation process, the distortion strain storage energy of metarial increases, the dynamic recrystallization is activated, the true stress decreases rapidly, and the post-hardening and softening reach dynamic balance. Finally, the influences of deformation temperature and strain rate on the true stress of material at high temperature were analyzed. The true stress decreases with the increasing of deformation temperature and the decreasing of strain rate. By summarizing the experimental data, the hot deformation activation energy of as-cast ER8 wheel steel is 258.4 kJ·mol-1, and the Arrhenius hyperbolic sine constitutive equation was established. In addition, the work hardening rate was solved by the graphing method to find the peak strain and critical strain, and the dynamic recrystallization volume fraction model was established, which accurately predicted the high-temperature softening behavior of this material and provided the theoretical basis for finite element numerical simulation. 

 
基金项目:
基金项目:太原科技大学博士科研启动基金项目(20172011);山西省重点研发计划重点项目(201703D111005);山西省重点学科建设经费资助
作者简介:
作者简介:任劲宇(1994-),男,硕士研究生 E-mail:1051846340@qq.com 通讯作者:赵晓东(1978-),男,博士,副教授 E-mail:zxd917@qq.com
参考文献:

 [1]秦清风, 谭迎新,杨勇彪,等.7A04铝合金车轮半成品热变形行为研究[J].轻合金加工技术, 2016, 44(4):51-57.


Qin Q F, Tan Y X, Yang Y B, et al. Hot deformation behavior of semifinished wheel rims of 7A04 aluminum alloy[J]. Light Alloy Fabrication Technology, 2016, 44(4):51-57.

[2]曲凤盛, 王震宏,张浩.V-5Cr-5Ti合金高温变形本构模型[J].中国有色金属学报, 2014, 24(12):3009-3015.

Qu F S, Wang Z H, Zhang H. Constitutive modeling for high temperature flow behavior of V-5Cr-5Ti alloy[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(12):3009-3015.

[3]袁昆, 王鑫,隋凤利,等.GH4169合金热轧过程流变应力模型[J].安徽工业大学学报:自然科学版,2016,33(2):110-113,125.

Yuan K, Wang X, Sui F L, et al. Flow stress model of GH4169 alloy in hot rolling process[J]. Journey of Anhui University of Technology: Natural Science, 2016, 33(2):110-113, 125.

[4]贾宝华, 刘翔,顾永强,等.Ti-1100 铸态合金的变形行为及本构模型研究[J].稀有金属, 2014, 38(6):283-291.

Jia B H, Liu X, Gu Y Q, et al. Study on deformation behavior and constitutive model of Ti-1100 ascast alloy[J]. Chinese Journal of Rare Metals, 2014, 38(6):283-291.

[5]张学瑞,秦凤明,何文武.电渣重熔Mn18Cr18N钢的热变形行为与本构方程[J].太原科技大学学报,2020,41(6):488-494.

Zhang X R, Qin F M, He W W. Hot deformation behavior and constitutive equation of electroslag remelting M18Cr18N steel[J].Jounal of Taiyuan University of Sicence Technology,2020,41(6):488-494.

[6]李凯, 薛河,崔英浩,等.304不锈钢冷加工过程中应力-应变本构方程的建立与验证[J].塑性工程学报, 2019, 26(2):225-232.

Li K, Xue H, Cui Y H, et al. Establishment and validation of stressstrain constitutive equation during cold working of 304 strain stress l[J]. Journal of Plasticity Engineering, 2019, 26(2):225-232.

[7]丁小凤, 双远华,林伟路,等.挤压态镁合金流变行为及本构模型研究[J].塑性工程学报, 2017, 24(6): 165-171.

Ding X F, Shuang Y H, Lin W L, et al. Study on the flow behavior and constitutive model of extruded magnesium alloy[J]. Journal of Plasticity Engineering, 2017, 24(6): 165-171.

[8]Jonas J, Sellars C M, Tegart J M. Strength and structure under hot working conditions[J].Metallurgical Reviews, 1969, 14:1-24.

[9]Zener C, Hollomon H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1):22-32.

[10]Zhang H, Chen G, Chen Q, et al. A physicallybased constitutive modelling of a high strength aluminum alloy at hot working conditions[J]. Journal of Alloys and Compounds, 2018,743:283-293.

[11]Khayatzadeh S, Poursina M, Golestanian H. A simulation of hollow and solid products in multipass hot radial forging using 3DFEM method[J]. International Journal of Material Forming, 2008, 1(S1):371-374.

[12]Zheng J, Li K, Liu S, et al. Effect of shape imperfection on the buckling of largescale thinwalled ellipsoidal head in steel nuclear containment[J]. ThinWalled Structures, 2018, 124:514-522.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9